Меню Рубрики

Суточные нормы потребление витаминов для детей воз

Так как hvastik.com — это сайт о зарубежном шоппинге, то все витамины мы покупаем в зарубежных магазинах, таких как iHerb.com . Мы считаем что качество и контроль витаминов в зарубежных магазинах выше чем в российских, при зачастую меньшей цене. Поэтому в таблице мы ориентируемся на рекомендованные суточные нормы потребления витаминов (RDA) составляемые американским надзорным ведомством U.S. Food and Drug Administration (FDA), на основании исследований Национальной Академии Наук США U.S. National Academy of Sciences.

Однако необходимо отметить, что нормы приема некоторых витаминов и минералов в США, в РФ, а также согласно рекомендациям ВОЗ могут отличаться, порой значительно.

Кроме того, RDA — это значение которое рекомендовано более чем 95% населения в среднем. Тут принцип такой, чтобы указанные суточные нормы точно покрыли потребности этих 95%. То есть если у вас сбалансированное питание, вы живете в экологически чистой местности и ведете здоровый образ жизни, то такие нормы могут быть для вас чрезмерны.

Впервые исследование по рекомендованным суточным нормам витаминов были опубликованы в 1968 году. С тех пор нормы многократно корректировались и продолжают корректироваться до сих пор.

На каждой банке витаминов произведенных в США, которые вы покупаете на iHerb.com, в обязательном порядке нанесена стандартная маркировка. Она везде одинаковая потому что должна соответствовать регламенту FDA. В крайне правой колонке этой таблицы указывается процентное содержание витамина или минерала в дозе этого средства от рекомендованной нормы каждого вещества.

Причем в случае витаминов для детей, в таблице должны указываться проценты от дневной нормы

Ед. Взрослые Младенцы Дети Мамы
Витамин A IU (ME) 5000 1500 2500 8000
Витамин C mg 60 35 40 60
Витамин D IU (ME) 400 400 400 400
Витамин E IU (ME) 30 5 10 30
Витамин K mcg 80 2 55 90
Витамин B1 (Тиамин) mg 1,5 0,5 0,7 1,7
Витамин B2 (Рибофлавин) mg 1,7 0,6 0,8 2
Витамин В3, (витамин РР, ниацин) mg 20 8 9 20
Витамин B6 mg 2 0,4 0,7 2,5
Витамин B9 (Фолиевая кислота, folate) mg 400 100 200 800
Витамин B12 mcg 6 2 3 8
Витамин H ( Биотин ) mcg 300 50 150 300
Витамин B5 (Пантотеновая кислота, Pantothenic acid ) mg 10 3 5 10
Кальций mg 1000 600 800 1300
Железо mg 18 15 10 18
Фосфор mg 1000 500 800 1300
Йод mcg 150 45 70 150
Магний mg 400 70 200 450
Цинк mg 15 5 8 15
Селен mcg 70 15 30 60
Медь mg 2 0,6 1 2
Марганец mg 2 0,003 1,5 2
  • Витамин А 1 IU = 0.3 mcg retinol, or of 0.6 mcg beta-carotene
  • Витамин D 1 IU = 0.025 mcg cholecalciferol or ergocalciferol
  • Витамин E 1 IU= 0.67 mg d-alpha-tocopherol, or 0.9 mg of dl-alpha-tocopherol

* Под младенцами имеются ввиду новорожденные до 2 лет. А дети — это дети до 2-4х лет. Таблица со взрослыми рекомендациями подходит и для детей старше 4х лет.

Пробники почти даром но только 2 шт. в руки

Скидка дня, бренд недели и регулярная распродажа

источник

Препараты с витаминами и микроэлементами рекомендуют в тех случаях, если ребенок:

Витаминно-минеральные комплексы прописывают со второй половины зимы до начала апреля. На этот период приходится пик заболеваемости ОРВИ: иммунитет ослаблен, а витамины, накопленные летом и осенью, уже организмом израсходованы, и ему необходима поддержка.

Есть и другие причины. Вот некоторые из них:

  • в 1-2 года ребенок активно растет и развивается физически. Для профилактики рахита и правильного формирования костей в этот период важны кальций и витамин Д;
  • когда малыш начинает общаться со сверстниками, посещать детский сад, поддержка нужна его иммунной системе. За это отвечают витамины С и Е, цинк, йод, селен;
  • с началом учебного процесса: чтения, письма, освоения компьютера — следует позаботиться о глазах. Защитить их помогают витамины А, Е, С, Д и В2, фолиевая кислота, полиненасыщенные омега-3 кислоты;
  • младшие школьники испытывают сильные нервные перегрузки. Повысить стрессоустойчивость и укрепить когнитивные функции помогают витамины группы В, йод и цинк. Улучшению питания мозга способствуют также аскорбиновая кислота, витамины А, Е и Д;
  • для нормальной работы кишечника детскому организму требуются пробиотики. Они нормализуют микрофлору, способствуют лучшему усвоению питательных веществ.
Возраст А (МЕ) В1 (мг) В2 (мг) Пантотеновая кислота (мг) В6 (мг) Фолиевая кислота (мкг) В12 (мг) РР (мкг) С(мг) D(МЕ) E(мг) H(мкг) K(мг)
0-1 1250 0.3 0.4 2 0.5 25 0,4 5 30 300 3 15 5-10
1-3 1350 0.7 0.8 3 1.0 50 0,7 9 40 400 6 20 15
4-6 1600 0.9 1.1 4 1.1 75 1,0 12 45 400 7 25 20
7-11 2300 1.0 1.2 5 1.4 100 1,4 7 45 400 7 30 30
11-18 девочки 3000 1.1 1.3 4-7 1.6 200 2,0 15 60 400 8 15 45-55
11-18 мальчики 3000 1.5 1.8 4-7 2.0 200 2,0 17-20 60 400 10 17-20 45-65
  1. Детям до года дают витамины в растворах.
  2. До 4-5 лет удобнее использовать жевательные витамины с приятными вкусами.
  3. Более взрослые дети могут принимать витамины в капсулах.
  4. Выбирая витамины для активно растущего ребенка (в том числе и в подростковом возрасте), нужно отдавать предпочтение препаратам с высоким содержанием кальция.
  5. После болезни самым важным компонентом становится витамин С. Его можно давать ребенку и в комплексе, и в качестве монотерапии.
  6. Для детей-аллергиков подойдут препараты без отдушек, красителей и консервантов. У них не такой яркий вкус, однако они безопасны и полезны.

Мы дадим несколько препаратов для ознакомления.

Жидкий витамин С от ChildLife Essentials с натуральным апельсиновым вкусом восполнит суточную потребность в аскорбиновой кислоте даже у подростка. Он содержит 20 мг полезного вещества в чайной ложке, поэтому для детей помладше требуется меньшая дозировка (смотрите в инструкции, консультируйтесь с врачом).

Жидкий кальций с магнием ChildLife Essentials — сбалансированный продукт. Его разрешается принимать с 6 месяцев. Малышам до 3 лет достаточно 1 чайной ложки в день. Детям постарше 2 ложки восполнят дефицит веществ, даже если они не любят молочные продукты.

Рыбий жир от Carlson Labs — отличный источник кислот омега-3 и витамина Е. Его можно добавлять в пищу по половине чайной ложки в день. Этого вполне достаточно для активно растущего ребенка старше 4 лет.

Garden of Life Vitamin Code — жевательные цельнопищевые мультивитамины для детей со вкусом вишни. Их принимают дважды в день. Большинство витаминов в препарате компенсируют суточную потребность ребенка. Меньший уровень содержания других витаминов и минералов учитывает, что дети получают часть необходимых веществ с пищей.

Жидкие мультивитамины для детей Animal Parade от Nature’s Plus со вкусом тропических ягод — идеальный продукт для малышей. Он содержит 11 основных компонентов в дозировке, достаточной для восполнения ежедневной потребности. Сироп вкусный, его принимают раз в день по половине колпачка. Деткам постарше подойдут жевательные зверюшки Animal Parade Gold.

Yum-V’s Multi·V + Multi-Mineral Formula со вкусом молочного шоколада содержит высокую дозу витамина Д и В6. Все остальные компоненты позволяют компенсировать недостаток витаминов и минералов и не вызвать повышенное выведение их из организма. Достаточно 1-2 жевательных мишек в день.

21st Century Health Care Zoo Friends Complete — универсальный комплекс мультивитаминов и минералов. Он содержит примерно половину витаминов и минералов, необходимых в сутки ребенку старше 4 лет. Этот препарат подойдет тем, кто правильно питается, и поддержит организм в межсезонье и после болезни. Форма выпуска — жевательные таблетки.

Перед приемом препаратов нужно обязательно проконсультироваться с педиатром!

Принимают препараты во время или сразу после еды. Так они лучше усваиваются и не нагружают печень и желудок. С этой же целью в течение курса интенсивной витаминотерапии рекомендуется больше пить.

В среднем, курс приема витаминно-минеральных комплексов составляет 1-1,5 месяца. После этого надо сделать перерыв, чтобы организм не «расслаблялся» и не забыл, как нужно извлекать вещества из продуктов питания. Повторять курсы витаминотерапии желательно 2-3 раза в год.

Материал подготовлен при информационной поддержке LifeEssence

источник

Все, что нужно знать о 13 существующих в природе витаминах: их пользе и опасности.

Этот гид написан на основе переработки текста книги “Витамания” издательства “Манн, Иванов и Фербер” и печатается с разрешения правообладателя. Если хотите узнать подробности – читайте оригинал.

Стоит нам услышать слово «витамин», как перед мысленным взором появляется пузырек с таблетками. Так же ошибочно мы готовы применить этот термин ко всем пищевым добавкам и нередко путаем с витаминами минералы.

Есть ровно 13 витаминов, действительно необходимых человеку: все это органические вещества, которые мы естественным образом получаем с продуктами питания.

4 витамина – жирорастворимые, а значит, им необходимы жиры, чтобы адсорбироваться (не путайте с “абсорбацией” – все написано правильно) в организме:

– А (ретинол),

– D (колекальциферол),

– E (токоферол),

– К (филлохинон).

Как мы знаем из курса школьной биологии – еще одна особенность жирорастворимых витаминов – их излишки не так просто вывести, организм не может с легкостью избавиться от них, например, с мочой. Передозировка жирорстворимых витаминов может быть не просто вредна, а даже опасна для жизни.

Оставшиеся 9 витаминов – растворимы в воде:

С (аскорбиновая кислота)

и восемь витаминов, объединенных в группу В:

– В1 (тиамин), В2 (рибофлавин), В3 (ниацин), В5 (пантотеновая кислота), В6 (пиридоксин), В7 (биотин, иногда называемый витамином Н), В9 (фолат, или фолиевая кислота), В12 (кобаламин).

Иногда в качестве 14-го витамина приводят также холин, но чаще мы встречаем список из тринадцати пунктов. (Некоторые витамины могут принимать несколько химических форм, и в таких случаях ученые имеют в виду наиболее распространенный или наиболее подходящий к случаю вариант).

В отличие от основных компонентов пищи (жиров, белков и углеводов) витамины не сгорают в организме как топливо; вместо этого они выполняют свою главную роль: способствуют протеканию важнейших химических реакций, поддерживающих жизнь в нашем теле.

Именно поэтому витамины определяются как незаменимые микрокомпоненты пищи — незаменимые , потому что организм не может без них обойтись, но в то же время не в состоянии синтезировать их самостоятельно в достаточных количествах. А это значит, что нам приходится получать их из внешних источников, причем приставка микро- говорит о том, что они нужны организму в реально минимальных количествах — как правило, не более 100 мг в день.

Существуют нормы потребления витаминов. К примеру, Всемирная организация здравоохранения рекомендует следующие нормы потребления витаминов (в первой колонке – усредненная рекомендуемая норма потребления в сутки):

Норма потребления витаминов, данные: ВОЗ

А теперь расскажем ключевые факты о каждом витамине в отдельности.

Открыт в 1915 году, выделен в 1937 году, определена структурная формула в 1942 году, синтезирован в 1947 году.

Польза витамина А. Этот витамин называют ретинолом, поскольку он играет важнейшую роль для нормального функционирования сетчатки глаза (от лат. retina — «сетчатка»). Витамин A также необходим для обеспечения деятельности слизисто-секреторных эпителиальных клеток, которые окружают (и защищают) дыхательный аппарат и другие жизненно важные органы, и играет немаловажную роль в нормальном функционировании иммунной системы и предотвращении различных инфекций. Он помогает предотвратить «ночную слепоту» (заболевание, известное еще как куриная слепота, или ксерофтальмия) и участвует в формировании и поддержании красивой кожи, здоровых зубов, костей и мягких тканей.

Источники витамина A: продукты животного происхождения — печень, рыба жирных сортов, яичные желтки, а также молочная продукция — цельное молоко и сыр. Кроме того, вы можете получить его из продуктов, обогащенных витамином A, — как правило, это обезжиренное молоко, маргарин, а также некоторые виды хлеба и каш. Человек также способен получить ретинол из каротиноидов, содержащихся в растительной пище, которые в организме превращаются в витамин A. Наиболее известный каротиноид — бета-каротин, придающий ярко-оранжевый цвет фруктам и овощам, в которых содержится в большом количестве: моркови, дыне-канталупе, абрикосам и сладкому картофелю. Также бета-каротин встречается в темно-зеленых листовых овощах, таких как капуста и шпинат, однако его маскирует хлорофилл — пигмент, который придает растениям зеленую окраску.

Витамин A считается наиболее опасным из витаминов, поскольку он может быть ядовитым даже в сравнительно низких дозах и, являясь жирорастворимым, имеет свойство накапливаться в тканях организма, откуда его очень сложно вывести. Получить вредную дозу ретинола из обычных, необогащенных продуктов практически невозможно, однако имеются исключения: в печени некоторых видов животных и рыб, в частности тюленей, белых медведей, палтуса, содержится огромное количество витамина A. Причем имеется в виду угрожающий избыток: так, в 1 г печени белого медведя целых 20 000 МЕ витамина A, в то время как норма потребления ретинола в сутки — всего 3000 МЕ, а МП (максимальное переносимое потребление) для взрослого человека составляет 10 000 МЕ.

Витамин A легко разрушается в результате длительного приготовления или хранения. И да, это правда: чрезмерное употребление продуктов, содержащих бета-каротин, хотя и не пред- ставляет опасности, но приведет к изменению оттенка вашей кожи на желтоватый или оранжевый.

Открыт в 1906 году, выделен в 1926 году, определена структурная формула в 1932 году, синтезирован в 1933 году. Название «тиамин» происходит от греч. thios — «сера» и свидетельствует о том, что этот витамин содержит серу.

Для чего нужен: Тиамин необходим для ферментативных реакций, в ходе которых углеводы преобразуются в энергию, а также играет важную роль в функционировании сердечно-сосудистой, мышечной и нервной систем.

Источники тиамина: дрожжи, обогащенный хлеб, мука, яйца, постное и органическое мясо, фасоль, орехи, крупы, горох и цельные злаки. Это водорастворимый витамин, чувствительный к высокой температуре и щелочной среде. Также довольно высокое количество витамина B1 характерно для сыров с плесенью, таких как бри и камамбер, — в них содержится примерно 0,4 мг тиамина на 100 г, что в 10 раз больше, чем, скажем, в молоке. Впрочем, с другой стороны неизвестно, что легче – выпить литр молока или съесть 100 граммов сыра с плесенью.

Существенный недостаток витамина B1 вызывает такое заболевание, как бери-бери, весьма распространенное в странах, где основу рациона составлял белый шлифованный рис, поскольку удаление рисовой оболочки приводит и к удалению тиамина. Во многом благодаря обогащению муки и зерновых продуктов нехватка тиамина в настоящее время встречается нечасто. Однако с этой проблемой сталкиваются алкоголики — отчасти из-за скудного рациона, которого они, как правило, придерживаются, а отчасти вследствие того, что спиртные напитки препятствуют всасыванию тиамина из пищи. Кроме того, неспособность к всасыванию тиамина может быть обусловлена генетически. Эта особенность проявляется только со временем, и врачи обычно затрудняются с диагнозом, поскольку большинство из них ассоциируют бери-бери с алкоголизмом.

Открыт в 1933 году, выделен в 1933 году, определена структурная формула в 1934 году, синтезирован в 1935 году.

Рибофлавин играет важную роль в образовании эритроцитов, стимулирует производство энергии в клетках, способствует поддержанию здоровья кожи и нормальному функционированию органов пищеварения.

Рибофлавин естественным образом присутствует в продуктах питания: в молочных продуктах, зеленых листовых овощах и мясе, и благодаря обогащению муки попадает в хлеб и каши. Интересно отметить, что молоко, полученное от коров, питавшихся свежей травой, содержит больше рибофлавина, нежели от коров, которым давали сухую траву (а рацион коров, как известно, зависит от времени года).

Прежде известный как витамин G, рибофлавин устойчив к высоким температурам и потому не разрушается в процессе приготовления пищи, однако при отмачивании он довольно легко переходит в воду и очень быстро разрушается под воздействием света.

Недостаток рибофлавина встречается относительно редко и характеризуется такими симптомами, как анемия (малокровие), воспаление кожи, трещинки и язвочки в уголках рта, резь в глазах и воспаление их слизистой оболочки (а иногда еще и слизистой оболочки вульвы или мошонки!)

Передозировка рибофлавина — явление редкое, поскольку он не слишком хорошо всасывается и выводится вместе с мочой. В связи с этим помните, что при избытке рибофлавина моча приобретает желтый оттенок (от лат. flavus — «желтый») — это состояние, которое иногда проявляется в результате приема поливитаминов.

Открыт в 1926 году, выделен в 1937 году, определена структурная формула в 1937 году. Этот витамин был синтезирован первым в далеком 1867 году, но в то время никто и не подозревал о связи никотиновой кислоты (так раньше назывался ниацин) с питанием. (На изменении названия настояли производители хлеба, которые боялись, что покупатели подумают, будто в их продукцию добавлен никотин).

Для чего нужен: ниацин — водорастворимый витамин, необходимый для нормального функционирования пищеварительной и нервной систем и здоровой кожи. Также он способствует выделению энергии из пищи и входит в состав ферментов, обеспечивающих клеточное дыхание.

Нехватка ниацина вызывает пеллагру — заболевание, весьма распространенное в конце XIX — начале XX века в южных штатах США, клиническая картина которого характеризуется тремя симптомами, известными как три “Д”: диарея, деменция и дерматит, — и довольно часто приводившее к смертельному исходу.

Важнейшие источники ниацина: пивные дрожжи и мясо, также его можно найти в яйцах, рыбе, бобовых, орехах, дичи и, разумеется, в обогащенных хлебе и кашах. Кроме того, он содержится в зернах кофе, при обжаривании которых его количество только возрастает.

Ниацин — очень устойчивый витамин, на него не влияет длительное хранение, он не уничтожается в процессе приготовления пищи, однако даже в нормальных количествах он способен вызывать покраснения кожи. Иногда его рекомендуют для снижения уровня холестерина. Он может взаимодействовать с другими лекарственными средствами, особенно с антикоагулянтами (препаратами, разжижающими кровь), а также с препаратами для нормализации артериального давления и уровня сахара в крови.

Открыт в 1931 году, выделен в 1939 году, определена структурная формула в 1939 году, синтезирован в 1940 году. Сам термин происходит от греч. pantothen — «всюду», то есть название говорит о том, насколько распространен этот витамин.

Для чего нужен: пантотеновая кислота — это сравнительно устойчивый к внешним воздействиям водорастворимый коэнзим, который играет важную роль в окислении жирных кислот и углеводов, синтезе аминокислот, а также необходим для здоровой кожи.

Витамин B5 содержится в пищевых продуктах, которые являются источниками других витаминов группы B, в частности, в субпродуктах, авокадо, брокколи, грибах и дрожжах. Лучшими природными источниками пантотеновой кислоты (невероятно, но факт!) являются маточное молочко и моло ́ки холодно-водных рыб.

До сих пор непонятно, каким образом человеческий организм регулирует содержание пантотеновой кислоты, однако есть предположение, что мы способны в некотором роде перерабатывать ее и использовать повторно. Человеку, который нормально питается и не голодает, невероятно сложно ощутить, что же такое нехватка пантотеновой кислоты.

Депантенол, предшественник пантотеновой кислоты (провитамин, который в нашем организме переходит в полноценный витамин), широко используется в косметической промышленности: он обладает увлажняющим эффектом и делает волосы блестящими (кстати, именно он дал название известной марке Pantene Pro-V).

Открыт в 1934 году, выделен в 1936 году, определена структурная формула в 1938 году, синтезирован в 1939 году.

Для чего нужен: все формы витамина B6 в нашем организме преобразуются в кофермент под названием «пиридоксальфосфат», который отвечает за удивительно большое количество разнообразных процессов и состояний, включая рост, когнитивное развитие, наличие или отсутствие депрессии и усталости, поддержание нормального иммунитета и активность стероидных гормонов. Он помогает организму продуцировать антитела и гемоглобин (белок, содержащийся в эритроцитах, который осуществляет доставку кислорода из легких в ткани), способствует нормальной работе нервной системы и усвоению белка.

Читайте также:  Когда надо детям принимать витамины

Если вы получаете полноценное питание, то недостаток витамина B6 вам вряд ли угрожает. Его можно получить из тех же продуктов, которые содержат другие витамины группы B.

Лучшими источниками считаются мясо, цельнозерновые продукты (в особенности пшеница), овощи и орехи. Кроме того, он может синтезироваться бактериями, поэтому встречается также в сырах с плесенью. Витамин B6 в продуктах питания достаточно устойчив к внешним воздействиям в кислотной среде, однако в иных условиях он чувствителен и к свету, и к нагреванию.

Открыт в 1926 году, выделен в 1939 году, определена структурная формула в 1924 году, синтезирован в 1943 году. Интересный факт: первоначальное название биотина — витамин H (от немецких слов haar and haut — «волосы» и «кожа»).

Наряду с пантотеновой кислотой и пиридоксином, биотин является одним из витаминов группы B, о поступлении которого в организм мы задумываемся меньше всего. Это водорастворимый, достаточно устойчивый к внешним воздействиям фермент, который помогает расщеплять углеводы и жиры и играет важную роль в клеточном дыхании.

Однако нам достаточно совсем небольшого количества биотина.

Он присутствует во многих продуктах: пивные дрожжи, яйца, орехи, сардины, цельные злаки и бобовые, поэтому его нехватка встречается чрезвычайно редко.

В группе риска по недостатку витамина B7 — беременные женщины, люди, которые длительное время получали питание через трубочку, а также те, кто попросту голодает.

Действенного способа измерить количество биотина в организме не существует, и о его нехватке можно судить лишь по внешним проявлениям, таким как выпадение волос, красная шелушащаяся кожа вокруг глаз, носа и рта.

Недостаток биотина вызывает нервные расстройства — депрессию, переутомление и галлюцинации.

И еще: в белках сырых яиц имеется вещество, которое связывает биотин в нашем кишечнике, в результате чего он не усваивается. Если вы мечтаете узнать, что же такое недостаток биотина, просто попробуйте съедать два или более сырых яичных белка ежедневно в течение нескольких месяцев.

Открыт в 1931 году, выделен в 1939 году, определена структурная формула в 1943 году, синтезирован в 1946 году.

В чем необходимость: фолат, синтетическая форма которого известна как фолиевая кислота, играет ключевую роль в закрытии нервной трубки эмбриона, внутри которой заключены головной и спинной мозг будущего младенца. Если на момент зачатия женщина испытывает недостаток фолиевой кислоты, трубка может закрыться не полностью, что может привести к возникновению такого дефекта, как расщепление позвоночника, которое, в свою очередь, приводит к повреждению нервной системы и неподвижности ног или к анэнцефалии — врожденному отсутствию головного мозга, что заканчивается смертельным исходом. Беременным следует убедиться, что организм получает достаточное количество фолиевой кислоты еще до зачатия, поскольку нервная трубка закрывается еще до того, как женщина понимает, что беременна.

На сегодняшний день в Соединенных Штатах Америки фолиевая кислота в обязательном порядке входит в состав всех обогащенных зерновых продуктов, что является попыткой предотвратить врожденные патологии. С 1998 года, когда было введено соответствующее постановление, количество дефектов нервной трубки сократилось примерно на 25–50%. Тем не менее в данном случае больше не значит лучше (спасибо постановлению, показатель увеличивается), поскольку чрезмерное употребление фолиевой кислоты часто маскирует симптомы дефицита витамина B12.

Фолат способствует образованию новых клеток в организме, и это еще одна важная причина, по которой беременным важно употреблять фолиевую кислоту. Кроме того, наряду с витаминами B12 и C фолиевая кислота участвует в усвоении и продуцировании новых белков, а также играет важную роль в формировании эритроцитов и воспроизводстве ДНК.

Фолиевая кислота присутствует в таких продуктах, как зеленые листовые овощи (само название происходит от лат. folium — «лист»), мясо, фасоль, горох, орехи, соки из цитрусовых, обогащенный хлеб и каши, однако под воздействием кислорода ее содержание резко снижается, и кроме того, при варке она обычно переходит в воду.

Помимо врожденных пороков, недостаток фолиевой кислоты может стать причиной диареи, возникновения язвочек во рту и определенных видов анемии.

Открыт в 1926 году, выделен в 1948 году, определена структурная формула в 1955 году, синтезирован в 1970 году.

Во многих отношениях витамин B12 — самый странный из витаминов. Имеющий в чистом виде насыщенно-красный цвет и кристаллическую структуру, он синтезируется микроорганизмами, включая бактерии рубца коровы или те, что встречаются в очистных сооружениях. Это единственная молекула человеческого тела, в которой содержится кобальт (отсюда и другие названия — кобаламин или цианкобаламин). Кроме того, он способен аккумулироваться в организме: младенцам, которые при рождении имеют весьма скромные запасы витамина B12, этого количества хватает на год.

Витамин B12 практически не разрушается в процессе приготовления пищи. Каждая его молекула состоит из 181 атома — больше, чем содержится в любом другом витамине, а по сравнению с витамином C и его 20 атомами он и вовсе монстр. Ученым понадобилось целых 23 года на то, чтобы синтезировать его (для сравнения: на синтез фолиевой кислоты ушло всего 3 года). Вследствие сложности формулы синтетический B12 получают только путем микробиологической ферментации.

Естественными источниками витамина B12 являются только продукты животного происхождения: мясо, рыба и молочная продукция (в организме животных синтезируется микрофлорой кишечника), вот почему вегетарианцы и веганы так часто испытывают его недостаток. Также этот витамин присутствует в печени, почках, устрицах, а еще (хотя я не рекомендую их к употреблению) в фекалиях.

Молекула витамина B12 настолько сложна, что процесс его всасывания проходит в несколько этапов. Сначала вашему организму необходимо выделить достаточное количество желудочного сока, чтобы отсечь витамин от остальной пищи. Затем особый фермент, продуцируемый в желудке, который называется внутренним фактором, делает его подходящим для вас. Если ваш организм не способен выделить достаточное количество желудочного сока или если не вырабатывается внутренний фактор, то процесс всасывания витамина B12, поступающего с пищей, нарушается и вы можете испытывать его нехватку.

Таким образом, если вам больше 50 лет, вы вегетарианец, принимаете антациды или ингибиторы протонных насосов, скорее всего, вам необходим дополнительный прием витамина B12 в виде таблеток. Из таблетки B12 всасывается гораздо легче, поскольку в данном случае он не связан едой и доступен без желудочного сока и внутреннего фактора.

Внутренний фактор открыл ученый по имени Уильям Босворт Касл, который пытался спасти своих родителей, умиравших от пер- нициозной анемии. Его метод был очень креативным, однако сегодня он вряд ли бы вызвал одобрение: Касл глотал куски практически сы- рого мяса, давал им возможность достичь его желудка и перевариться примерно наполовину, а затем вызывал у себя искусственную рвоту и вводил полученную массу своим родителям через трубочку. Благо- даря тому, что в организме доктора присутствовал внутренний фак- тор, его родители могли всасывать витамин B12. Пожилые люди даже и представить не могли, что их спасение — это примитивная рвота.

Если вы испытываете острую нехватку B12, врач может назначить вам его инъекции — это самый простой способ получения этого витамина, поскольку в данном случае желудочно-кишечный тракт остается незадействованным вовсе.

Витамин B12 играет ключевую роль в синтезе ДНК, нормальном функционировании нервной системы и образовании эритроцитов.

Последствия дефицита B12 могут быть самыми разными — от потери равновесия до галлюцинаций, дезориентации в пространстве, онемения, покалывания в руках, потери памяти, мегалобластной анемии и слабоумия.

Витамин B12 также может быть противоядием при отравлении цианидом.

Открыт в 1907 году, выделен в 1926 году, определена структурная формула в 1932 году, синтезирован в 1933 году. В истории открытия витамина C задействован один из наиболее колоритных персонажей в истории витаминов — венгерский биохимик Альберт Сент-Дьердьи, который выделил витамин C из апельсинов, лимонов, капусты, надпочечников (а позже из стручкового перца), при этом понятия не имея о том, что это за вещество. Первым вариантом названия вещества было Ignose (от ignosco —«я не знаю» и ose — для обозначения сахара). Когда это название было отвергнуто, он предложил другое слово — Godnose (то есть «знает Бог»). Однако редактор журнала Biochemical Journal, по-видимому, не обладавший чувством юмора, отклонил и это слово, и в итоге было выбрано название «гексуроновая кислота» (поскольку в нем присутствовало шесть атомов углерода).

В наше время известно, что человек наряду с морскими свинками, плотоядными летучими мышами и некоторыми приматами — это единственное млекопитающее, организм которого не в состоянии вырабатывать витамин C самостоятельно.

Витамин C способствует образованию коллагена — это белок, который отвечает за состояние кожи, связок, сухожилий и кровеносных сосудов. Также он способствует заживлению и рубцеванию ран, а еще восстановлению и поддержанию в нормальном состоянии хрящей, костей и зубов (яркими симптомами авитаминоза витамина C — цинги, как известно, являются кровоточивость десен и выпадение зубов). Кроме того, это важнейший антиоксидант.

Витамин C является весьма неустойчивым – на него влияет буквально все. Его богатейшие источники — свежие, необработанные овощи и фрукты, в особенности цитрусовые, например апельсины и лимоны, дыня-канталупа, киви, разнообразные ягоды, брокколи, брюссельская и цветная капуста, квашеная капуста, болгарский перец, зеленые листовые овощи и помидоры, шиповник.

Витамин C является водорастворимым, и его передозировка — явление довольно редкое, поскольку избыток выводится с мочой, но тем не менее большинство специалистов сходятся во мнении, что очень большие дозы витамина C вряд ли помогут избавиться даже от обычной простуды (не говоря уже о других, более серьезных заболеваниях). Кроме того, люди, которые курят, как правило, получают меньше витамина C.

Витамин C в синтетической форме выпускается в большем количестве, нежели другие витамины, поскольку он широко используется не только для питания, но и для других нужд. В частности, это вкусовая добавка, которая помогает предотвратить различные не очень приятные реакции, например потемнение срезов фруктов и овощей или появление постороннего привкуса.

Также его применяют в промышленности, например в фотосъемке, производстве пластмасс, водоочистке (для удаления избытка хлора), изготовлении пятновыводителей, средств по уходу за кожей и волосами.

Открыт в 1919 году, выделен в 1932 году, определена структурная формула в 1932 году (D2), 1936 году (D3), синтезирован в 1932 году (D2), 1936 году (D3).

В отличие от большинства витаминов, которые тем или иным образом принимают участие в ферментативных реакциях, витамин D является гормоном, то есть химическим элементом, который «говорит» нашему организму сделать что-то в определенном месте.

Также в отличие от других витаминов нам необязательно получать витамин D с пищей, поскольку он сам вырабатывается в нашем организме под воздействием солнечного света, попадающего на кожу.

Лучшими естественными источниками этого витамина являются жирная рыба, в частности тунец, семга и скумбрия, а также сам пресловутый рыбий жир. Кстати, витамин D, содержащийся в молоке, добавляется туда искусственным путем.

Витамин D является жирорастворимым и достаточно устойчивым к внешним воздействиям, за исключением, пожалуй, кислот и, что весьма забавно, света, благодаря которому мы его и получаем.

Витамин D необходим нашему организму для усвоения кальция — минерала, который играет ключевую роль в формировании крепких костей. Вот почему недостаток этого витамина может привести к возникновению рахита у детей или размягчению костей (остеомиелиту) у взрослых.

Некоторые ученые предполагают, что витамин D может применяться также для лечения других заболеваний, в частности раковых опухолей или диабета первого типа. Однако эти потенциальные возможности еще до конца не изучены, и специальный комитет совета по продовольствию и питанию Института медицины пришел к заключению, что укрепление костей — единственный доказанный положительный эффект от употребления кальция и витамина D, и потому именно этот эффект справедливо считается отправной точкой. Однако, как отмечают сами представители комитета, это вовсе не означает, что в остальном витамин D бесполезный. Просто необходимо проделать дополнительную работу, чтобы лучше изучить его свойства.

Большинство экспертов сходятся во мнении, что те, кто проживает севернее линии, проходящей через Сан-Франциско, Афины и Пекин, недополучают витамин D, особенно в зимнее время, и потому им необходимо принимать его дополнительно. Точно так же, если вы мало времени проводите на свежем воздухе или постоянно пользуетесь солнцезащитным кремом, который не позволяет вашему организму вырабатывать витамин D, если у вас смуглая кожа, вы предпочитаете одежду, закрывающую бо ́льшую часть вашего тела, а также если вы пожилой человек с лишним весом или ожирением, помните, что все это может негативно сказаться на вашей способности получать витамин D и вам потребуется его дополнительный прием.

Очень важно помнить о взаимодействии витамина D с определенными лекарственными средствами, в особенности с теми, которые отвечают за повышение фермента цитохрома CYP3A4 в печени. Известно, что именно цитохром CYP3A4 отвечает за метаболизм лекарственных веществ, однако он также может снижать уровень активных форм витамина D, и это значит, что вы нуждаетесь в более высокой дозе этого витамина, чтобы его содержание в крови не уменьшилось.

Витамин D выпускается в двух лекарственных формах — эргокальциферол (витамин D2) и холекальциферол (витамин D3). D2 получают из растений, а D3 синтезируют из животного жира (наиболее частый способ — облучение ланолина). По мнению доктора Майкла Ливайна, главного врача Центра здоровых костей при Детской больнице Филадельфии, при ежедневном приеме хороша любая форма витамина. Однако если вы употребляете добавку только раз в неделю (что вполне приемлемо, поскольку витамин D является жиро- растворимым и не выводится с мочой), он рекомендует использовать именно D3, поскольку эта форма — более «долговечная», нежели D2.

Конечно, и в этом случае больше не значит лучше: слишком высокое содержание витамина D в организме приведет к всасыванию излишнего количества кальция, который может осесть в совершенно не тех местах, например в артериях.

Однако не бойтесь, что вы получите слишком большую дозу витамина D в результате воздействия солнечного света — наш организм сам знает, когда следует остановить его выработку.

Открыт в 1922 году, выделен в 1936 году, определена структурная формула в 1938 году, синтезирован в 1938 году.

Витамин E — это общее название для целой группы веществ (их по меньшей мере 8), отличающихся биологической активностью, наиболее активным из которых является альфа-токоферол (от греч. tokos — «потомство» и pherein — «приносить»).

В настоящее время он по-прежнему овеян загадочным ореолом и роль, которую витамин Е играет в нашем организме, до конца неизвестна. Мы знаем, что витамин E — это важнейший жирорастворимый антиоксидант, который спасает клетки от окислительного повреждения. Вместе с водорастворимыми антиоксидантами, например витамином C, витамин E образует своего рода антиоксидантную сеть.

Кроме того, благодаря выраженным антиоксидантным свойствам витамин E часто добавляют в продукты питания и корма для животных, поскольку он помогает увеличить срок годности. Альфа-токоферол — это наиболее биологически доступная и биологически активная форма.

Как и остальные формы витамина E, в чистом виде он имеет бледно-желтый цвет и является достаточно вязким. Под воздействием света, при нагревании и в щелочной среде он темнеет, что сопоставимо с той же окислительной реакцией, которая приводит к потемнению срезов фруктов. Альфа-токоферол становится менее устойчивым при отрицательных температурах.

Помимо масла зародышей пшеницы, богатейшими источниками витамина E являются также другие растительные масла, в частности кукурузное, соевое, пальмовое, подсолнечное и шафрановое, а еще орехи и семечки. Несмотря на то что этот витамин жирорастворимый, его передозировка с пищей встречается крайне редко.

Кроме того, благодаря распространенности витамина Е его дефицит — также явление, практически невозможное.

Открыт в 1929 году, выделен в 1939 году, определена структурная формула в 1939 году, синтезирован в 1940 году.

Свое название витамин K получил от слова «коагуляция» (свертываемость), и оно вполне оправданно, поскольку подчеркивает его важную роль в процессе свертывания крови.

Иногда доктора рекомендуют принимать его для нейтрализации действия лекарственных препаратов, которые разжижают кровь, — и это значит, что вам не следует применять его, если у вас густая кровь и вы пытаетесь сделать ее более жидкой с помощью антикоагулянтов.

Также витамин K способствует формированию крепких костей.

Естественным образом он содержится в зеленых листовых овощах, например в кудрявой капусте, шпинате, ботве репы и свеклы, петрушке, а еще в брокколи, цветной, белокочанной и брюссельской капусте. В небольших количествах витамин K также присутствует в рыбе, печени, мясе и яйцах, а кроме того, бактерии желудочно-кишечного тракта также в состоянии вырабатывать его самостоятельно (хотя и по чуть-чуть).

Достаточно устойчивый к нагреванию, витамин K является жирорастворимым, и его острый дефицит — явление очень редкое. Часто его даже не включают в мультивитаминные комплексы.

Специалисты до сих пор спорят, можно ли считать холин, содержащийся в яйцах, говяжьей печени, зародышах пшеницы и овощах семейства крестоцветных, 14-м по счету витамином (если да, то его обычно относят к семейству витаминов группы B).

Вот что говорит по этому поводу Джеральд Комбс, автор учебника «Витамины»:

«Очевидно, что есть случаи, когда животные, способные вырабатывать холин, также получают пользу и от холина в виде добавок. Если уж на то пошло, то и некоторые люди, а именно те, что употребляют мало белка, а следовательно, и метионина — первоисточника подвижных метильных групп, необходимых для выработки холина. Также я полагаю, что дополнительный прием холина будет полезен для людей, которые недополучают необходимые питательные вещества из-за несбалансированного рациона, связанного с болезнью, потерей аппетита, преклонным возрастом, бедностью и так далее.

Как правило, эти группы не учитываются при составлении рекомендуемых норм потребления, которые рассчитаны на среднестатистического человека (вот почему не приводится норма потребления для холина). Однако холин — это единственное питательное вещество, недостаток которого очень сильно увеличивает риск развития раковых заболеваний. Поэтому, с моей точки зрения, с нашей стороны было бы весьма недальновидно сбрасывать его со счетов».

источник

Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации

1. РАЗРАБОТАНЫ ГУ НИИ питания РАМН (В.А.Тутельян, академик РАМН, руководитель работ; А.К.Батурин, д.м.н., профессор; М.Г.Гаппаров, член-корреспондент РАМН; Б.С.Каганов, член-корреспондент РАМН; И.Я.Конь, д.м.н., профессор; В.К.Мазо, д.б.н., профессор, ответственные исполнители: В.С.Баева, к.б.н.; В.В.Бессонов, к.х.н.; А.В.Васильев, д.б.н., профессор; Л.Ю.Волкова, к.м.н.; О.А.Вржесинская, к.б.н.; М.В.Гмошинская, д.м.н.; В.М.Жминченко, к.м.н.; И.С.Зилова, к.м.н.; Э.Э.Кешабянц, к.м.н.; В.М.Коденцова, д.б.н., профессор; Л.В.Кравченко, к.м.н.; С.Н.Кулакова, к.м.н.; Н.В.Лашнева, к.м.н.; А.В.Погожева, д.м.н., профессор; А.М.Сафронова, к.б.н.; А.И.Соколов, к.м.н.; В.Б.Спиричев, д.б.н., профессор; С.А.Хотимченко, д.м.н., профессор; Н.М.Шилина, к.б.н.); Научным центром здоровья РАМН (А.А.Баранов, академик РАМН, Т.Э.Боровик, д.м.н., профессор); Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека (Г.Г.Онищенко, академик РАМН); Московской медицинской академией им. И.М.Сеченова (Б.П.Суханов, д.м.н., профессор); Государственным научным центром РФ — «Институт медико-биологических проблем РАН» (А.И.Григорьев, академик РАН и РАМН); Российской медицинской академией последипломного образования Минздравсоцразвития России (Н.А.Коровина, д.м.н., профессор, Т.Н.Сорвачева, д.м.н., профессор).

Читайте также:  Когда надо принимать витамин д детям

2. УТВЕРЖДЕНЫ Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г.Онищенко 18 декабря 2008 г.

3. ВВЕДЕНЫ в действие с 18 декабря 2008 г.

Физиологическая потребность в энергии и пищевых веществах — это необходимая совокупность алиментарных факторов для поддержания динамического равновесия между человеком как сформировавшимся в процессе эволюции биологическим видом и окружающей средой, направленная на обеспечение жизнедеятельности, сохранения и воспроизводства вида и поддержания адаптационного потенциала.

«Нормы физиологических потребностей в энергии и пищевых веществах» — усредненная величина необходимого поступления пищевых и биологически активных веществ, обеспечивающая оптимальную реализацию физиолого-биохимических процессов, закрепленных в генотипе человека.

«Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации» (далее — нормы) являются государственным нормативным документом, определяющим величины физиологически обоснованных современной наукой о питании норм потребления незаменимых (эссенциальных) пищевых веществ и источников энергии, адекватные уровни потребления микронутриентов и биологически активных веществ с установленным физиологическим действием.

Данные нормы являются научной базой при планировании объемов производства основного продовольственного сырья и пищевых продуктов в Российской Федерации; при разработке перспективных среднедушевых размеров (норм) потребления основных пищевых продуктов с учетом изменения социально-экономической ситуации и демографического состава населения Российской Федерации для обоснования оптимального развития отечественного агропромышленного комплекса и обеспечения продовольственной безопасности страны; для планирования питания в организованных коллективах и лечебно-профилактических учреждениях; используются при разработке рекомендаций по питанию для различных групп населения и мер социальной защиты; применяются для обоснования составов специализированных и обогащенных пищевых продуктов; служат критерием оценки фактического питания на индивидуальном и популяционном уровнях; используются при разработке программ подготовки специалистов и обучении населения принципам здорового питания и др.

Нормы являются величинами, отражающими оптимальные потребности отдельных групп населения в пищевых веществах и энергии.

Нормы представляют величины потребности в энергии для лиц в каждой выделяемой (в зависимости от пола, возраста, профессии, условий быта и т.п.) группе, а также рекомендуемые величины потребления пищевых веществ, которые должны обеспечивать потребность соответствующей категории населения.

Нормы базируются на основных положениях Концепции оптимального питания:

энергетическая ценность рациона человека должна соответствовать энерготратам организма;

величины потребления основных пищевых веществ — белков, жиров и углеводов — должны находиться в пределах физиологически необходимых соотношений между ними. В рационе предусматриваются физиологически необходимые количества животных белков — источников незаменимых аминокислот, физиологические пропорции ненасыщенных и полиненасыщенных жирных кислот, оптимальное количество витаминов;

содержание макроэлементов и эссенциальных микроэлементов должно соответствовать физиологическим потребностям человека;

содержание минорных и биологически активных веществ в пище должно соответствовать их адекватным уровням потребления.

Настоящие нормы представляют собой дальнейшее развитие действовавших в Российской Федерации норм СССР от 1991 г. Сохраняя преемственность, представленные новые нормы учитывают значительные достижения, накопленные за последние годы благодаря новейшим фундаментальным и прикладным исследованиям в области науки о питании и таких новых областях знаний как нутригеномика, нутригенетика, нутриметаболомика и протеомика.

Белки — высокомолекулярные азотсодержащие биополимеры, состоящие из L-аминокислот. Выполняют пластическую, энергетическую, каталитическую, гормональную, регуляторную, защитную, транспортную, энергетическую и другие функции.

Величина основного обмена (BOO) — минимальное количество энергии, необходимое для осуществления жизненно важных процессов, то есть затраты энергии на выполнение всех физиологических, биохимических процессов, на функционирование органов и систем организма в состоянии температурного комфорта (20 °С), полного физического и психического покоя натощак.

Витаминоподобные вещества — вещества животного и растительного происхождения с доказанной ролью в обмене веществ и энергии, сходные по своему физиологическому действию с витаминами.

Витамины — группа эссенциальных микронутриентов, участвующих в регуляции и ферментативном обеспечении большинства метаболических процессов.

Жиры (липиды) — сложные эфиры глицерина и высших жирных карбоновых кислот, являются важнейшими источниками энергии. До 95% всех липидов — простые нейтральные липиды (глицериды).

Макронутриенты — пищевые вещества (белки, жиры и углеводы), необходимые человеку в количествах, измеряемых граммами, обеспечивают пластические, энергетические и иные потребности организма.

Микронутриенты — пищевые вещества (витамины, минеральные вещества и микроэлементы), которые содержатся в пище в очень малых количествах — миллиграммах или микрограммах. Они не являются источниками энергии, но участвуют в усвоении пищи, регуляции функций, осуществлении процессов роста, адаптации и развития организма.

Минорные и биологически активные вещества пищи с установленным физиологическим действием — природные вещества пищи установленной химической структуры, присутствуют в ней в миллиграммах и микрограммах, играют важную и доказанную роль в адаптационных реакциях организма, поддержании здоровья, но не являются эссенциальными пищевыми веществами.

Незаменимые (эссенциальные) пищевые вещества — не образуются в организме человека и обязательно поступают с пищей для обеспечения его жизнедеятельности. Их дефицит в питании приводит к развитию патологических состояний.

Нормы физиологических потребностей в энергии и пищевых веществах — усредненная величина необходимого поступления пищевых и биологически активных веществ, обеспечивающая оптимальную реализацию физиолого-биохимических процессов, закрепленных в генотипе человека.

Пищевые волокна — высокомолекулярные углеводы (целлюлоза, пектины и другое, в т.ч. некоторые резистентные к амилазе виды крахмалов) главным образом растительной природы, устойчивы к перевариванию и усвоению в желудочно-кишечном тракте.

Рекомендуемый уровень адекватного потребления — уровень суточного потребления пищевых и биологически активных веществ, установленный на основании расчетных или экспериментально определенных величин, или оценок потребления пищевых и биологически активных веществ группой/группами практически здоровых людей.

Углеводы — полиатомные альдегидо- и кетоспирты, простые (моносахариды и дисахариды), сложные (олигосахариды, полисахариды), являются основными источниками энергии для человека. Некоторые углеводы, в частности аминосахара, входят в состав гликопротеидов.

Физиологическая потребность в энергии и пищевых веществах — это необходимая совокупность алиментарных факторов для поддержания динамического равновесия между человеком как сформировавшимся в процессе эволюции биологическим видом и окружающей средой, направленная на обеспечение жизнедеятельности, сохранения и воспроизводства вида и поддержания адаптационного потенциала.

Фосфолипиды — эфиры спиртов (глицерина, сфингозина), жирных кислот, фосфорной кислоты, содержат азотистые основания (холин, этаноламин, остатки аминокислот, углеводные фрагменты), составляют основной класс мембранных липидов.

Энергетический баланс — равновесное состояние между поступающей с пищей энергией и ее затратами на все виды физической активности, на поддержание основного обмена, роста, развития и дополнительными затратами у женщин при беременности и грудном вскармливании.

Энерготраты суточные — сумма суточных энерготрат организма, состоящая из энерготрат основного обмена, затрат энергии на физическую активность, специфическое динамическое действие пищи (пищевой термогенез), холодовой термогенез, рост и формирование тканей у детей и дополнительных затрат энергии у беременных и кормящих грудью женщин.

Выделены следующие половозрастные группы: мужчины и женщины 18-29 лет, 30-39 лет, 40-59 лет, а также лица пожилого возраста: мужчины и женщины старше 60 лет.

Возрастная периодизация детского населения, принятая в Российской Федерации, разработана с учетом двух факторов: биологического (онтогенетического) и социального критерия, учитывающего особенности обучения и воспитания в нашей стране. При этом социальное деление на возрастные группы в основном не противоречит биологическому. Соответственно выделены:

Потребность в энергии и пищевых веществах зависит от физической активности, характеризуемой коэффициентом физической активности (КФА), равным отношению энерготрат на выполнение конкретной работы к BOO.

Все взрослое население в зависимости от величины энерготрат делится на 5 групп для мужчин и 4 группы для женщин, учитывающих производственную физическую активность и иные энерготраты.

I группа (очень низкая физическая активность; мужчины и женщины) — работники преимущественно умственного труда, коэффициент физической активности — 1,4 (государственные служащие административных органов и учреждений, научные работники, преподаватели вузов, колледжей, учителя средних школ, студенты, специалисты-медики, психологи, диспетчеры, операторы, в т.ч. техники по обслуживанию ЭВМ и компьютерного обеспечения, программисты, работники финансово-экономической, юридической и административно-хозяйственной служб, работники конструкторских бюро и отделов, рекламно-информационных служб, архитекторы и инженеры по промышленному и гражданскому строительству, налоговые служащие, работники музеев, архивов, библиотекари, специалисты службы страхования, дилеры, брокеры, агенты по продаже и закупкам, служащие по социальному и пенсионному обеспечению, патентоведы, дизайнеры, работники бюро путешествий, справочных служб и других родственных видов деятельности);

II группа (низкая физическая активность; мужчины и женщины) — работники, занятые легким трудом, коэффициент физической активности — 1,6 (водители городского транспорта, рабочие пищевой, текстильной, швейной, радиоэлектронной промышленности, операторы конвейеров, весовщицы, упаковщицы, машинисты железнодорожного транспорта, участковые врачи, хирурги, медсестры, продавцы, работники предприятий общественного питания, парикмахеры, работники жилищно-эксплуатационной службы, реставраторы художественных изделий, гиды, фотографы, техники и операторы радио и телевещания, таможенные инспектора, работники милиции и патрульной службы и других родственных видов деятельности);

III группа (средняя физическая активность; мужчины и женщины) — работники средней тяжести труда, коэффициент физической активности — 1,9 (слесари, наладчики, станочники, буровики, водители электрокаров, экскаваторов, бульдозеров и другой тяжелой техники, работники тепличных хозяйств, растениеводы, садовники, работники рыбного хозяйства и других родственных видов деятельности);

IV группа (высокая физическая активность; мужчины и женщины) — работники тяжелого физического труда, коэффициент физической активности — 2,2 (строительные рабочие, грузчики, рабочие по обслуживанию железнодорожных путей и ремонту автомобильных дорог, работники лесного, охотничьего и сельского хозяйства, деревообработчики, физкультурники, металлурги доменщики-литейщики и другие родственные виды деятельности);

V группа (очень высокая физическая активность; мужчины) — работники особо тяжелого физического труда, коэффициент физической активности — 2,5 (спортсмены высокой квалификации в тренировочный период, механизаторы и работники сельского хозяйства в посевной и уборочный периоды, шахтеры и проходчики, горнорабочие, вальщики леса, бетонщики, каменщики, грузчики немеханизированного труда, оленеводы и другие родственные виды деятельности).

Суточные энерготраты определяются энерготратами на конкретные виды деятельности и BOO.

BOO зависит от ряда факторов, в первую очередь от возраста, массы тела и пола.

У женщин: BOO на 15% ниже, чем у мужчин (табл.4.1).

Средние величины основного обмена взрослого населения России (ккал/сут)

При беременности и грудном вскармливании потребности в энергии увеличиваются в среднем на 15 и 25% соответственно.

У детей: в период новорожденности 15% потребляемой с пищей энергии тратится на рост. С возрастом отношение BOO: масса тела постепенно снижается до наступления полового созревания. Максимальной потребности в энергии соответствует быстрый рост в подростковом возрасте (пубертатный период, табл.4.2).

Средние величины основного обмена детского населения

Основной обмен (ккал/кг массы тела)

Расход энергии на адаптацию к холодному климату в районах Крайнего Севера увеличивается в среднем на 15%.

Суточные энерготраты на конкретный вид деятельности — это произведение BOO на соответствующий КФА.

Физиологические потребности в энергии для взрослых — от 2100 до 4200 ккал/сут для мужчин и от 1800 до 3050 ккал/сут для женщин.

Физиологические потребности в энергии для детей — 110-115 ккал/кг массы тела для детей до 1 года и от 1200 до 2900 ккал/сут для детей старше 1 года.

Потребность в белке — эволюционно сложившаяся доминанта в питании человека, обусловленная необходимостью обеспечивать оптимальный физиологический уровень поступления незаменимых аминокислот. При положительном азотистом балансе в периоды роста и развития организма, а также при интенсивных репаративных процессах потребность в белке на единицу массы тела выше, чем у взрослого здорового человека. Усвояемость белка — показатель, характеризующий долю абсорбированного в организме азота от общего количества, потребленного с пищей. Биологическая ценность — показатель качества белка, характеризующий степень задержки азота и эффективность его утилизации для растущего организма или для поддержания азотистого равновесия у взрослых. Качество белка определяется наличием в нем полного набора незаменимых аминокислот в определенном соотношении как между собой, так и с заменимыми аминокислотами. При окислении в организме 1 г белка дает 4 ккал.

Уточнение потребности в белке для детей старше 1 года сделано на основе результатов новых исследований по фактическому потреблению белка большинством детей обследованной популяции.

Физиологическая потребность в белке для взрослого населения — от 65 до 117 г/сут для мужчин, и от 58 до 87 г/сут для женщин.

Физиологические потребности в белке детей до 1 года — 2,2-2,9 г/кг массы тела, детей старше 1 года от 36 до 87 г/сут.

4.2.1.1.1. Белок животного происхождения. Источниками полноценного белка, содержащего полный набор незаменимых аминокислот в количестве, достаточном для биосинтеза белка в организме человека, являются продукты животного происхождения (молоко, молочные продукты, яйца, мясо и мясопродукты, рыба, морепродукты). Белки животного происхождения усваиваются организмом на 93-96%.

Для взрослых рекомендуемая в суточном рационе доля белков животного происхождения от общего их количества — 50%.

Для детей рекомендуемая в суточном рационе доля белков животного происхождения — 60%.

4.2.1.1.2. Белок растительного происхождения. В белках растительного происхождения (злаковые, овощи, фрукты) имеется дефицит незаменимых аминокислот. В составе бобовых содержатся ингибиторы протеиназ, что снижает усвоение белка из них. Что касается изолятов и концентратов белков из бобовых, то их аминокислотный состав и усвоение близки к таковым у белка животного происхождения. Белок из продуктов растительного происхождения усваивается организмом на 62-80%. Белок из высших грибов усваивается на уровне 20-40%.

Жиры (липиды), поступающие с пищей, являются концентрированным источником энергии (1 г жира при окислении в организме дает 9 ккал). Жиры растительного и животного происхождения имеют различный состав жирных кислот, определяющий их физические свойства и физиолого-биохимические эффекты. Жирные кислоты подразделяются на два основных класса — насыщенные и ненасыщенные.

Физиологическая потребность в жирах — от 70 до 154 г/сут для мужчин и от 60 до 102 г/сут для женщин.

Физиологическая потребность в жирах для детей до года — 5,5-6,5 г/кг массы тела, для детей старше года — от 40 до 97 г/сут.

4.2.1.2.1. Насыщенные жирные кислоты. Насыщенность жира определяется количеством атомов водорода, которое содержит каждая жирная кислота. Жирные кислоты со средней длиной цепи (С8-С14) способны усваиваться в пищеварительном тракте без участия желчных кислот и панкреатической липазы, не депонируются в печени и подвергаются -окислению. Животные жиры могут содержать насыщенные жирные кислоты с длиной цепи до двадцати и более атомов углерода, они имеют твердую консистенцию и высокую температуру плавления. К таким животным жирам относятся бараний, говяжий, свиной и ряд других. Высокое потребление насыщенных жирных кислот является важнейшим фактором риска развития диабета, ожирения, сердечно-сосудистых и других заболеваний.

Потребление насыщенных жирных кислот для взрослых и детей должно составлять не более 10% от калорийности суточного рациона.

4.2.1.2.2. Мононенасыщенные жирные кислоты. К мононенасыщенным жирным кислотам относятся миристолеиновая и пальмитолеиновая кислоты (жиры рыб и морских млекопитающих), олеиновая (оливковое, сафлоровое, кунжутное, рапсовое масла). Мононенасыщенные жирные кислоты помимо их поступления с пищей в организме синтезируются из насыщенных жирных кислот и частично из углеводов.

Физиологическая потребность в мононенасыщенных жирных кислотах для взрослых должна составлять 10% от калорийности суточного рациона.

4.2.1.2.3. Полиненасыщенные жирные кислоты. Жирные кислоты с двумя и более двойными связями между углеродными атомами называются полиненасыщенными (ПНЖК). Особое значение для организма человека имеют такие ПНЖК как линолевая, линоленовая, являющиеся структурными элементами клеточных мембран и обеспечивающие нормальное развитие и адаптацию организма человека к неблагоприятным факторам окружающей среды. ПНЖК являются предшественниками образующихся из них биорегуляторов — эйкозаноидов.

Физиологическая потребность в ПНЖК — для взрослых 6-10% от калорийности суточного рациона.

Физиологическая потребность в ПНЖК — для детей 5-10% от калорийности суточного рациона.

Омега-6 ( -6) и Омега-3 ( -3). ПНЖК. Двумя основными группами ПНЖК являются кислоты семейств -6 и -3. Жирные кислоты -6 содержатся практически во всех растительных маслах и орехах; -3 жирные кислоты также содержатся в ряде масел (льняном, из семян крестоцветных, соевом). Основным пищевым источником -3 жирных кислот являются жирные сорта рыб и некоторые морепродукты. Из ПНЖК -6 особое место занимает линолевая кислота, которая является предшественником наиболее физиологически активной кислоты этого семейства — арахидоновой. Арахидоновая кислота является преобладающим представителем ПНЖК в организме человека.

Физиологическая потребность для взрослых составляет 5-8% от калорийности суточного рациона для -6 и 1-2% — для -3. Оптимальное соотношение в суточном рационе -6 к -3 жирных кислот должно составлять 5-10:1.

Физиологическая потребность в -6 и -3 жирных кислотах — 4-9% и 0,8-1,0% от калорийности суточного рациона для детей от 1 года до 14 лет, 5-8% и 1-2% для детей от 14 до 18 лет соответственно.

4.2.1.2.4. Стерины. В пищевых продуктах животного происхождения основным представителем стеринов является холестерин. Количество холестерина в суточном рационе взрослых и детей не должно превышать 300 мг.

4.2.1.2.5. Фосфолипиды. Фосфолипиды участвуют в регуляции обмена холестерина и способствуют его выведению. В пищевых продуктах растительного происхождения в основном встречаются лецитин, в состав которого входит витаминоподобное вещество холин, а также кефалин. Оптимальное содержание фосфолипидов в рационе взрослого человека — 5-7 г/сут.

Углеводы пищи представлены преимущественно полисахаридами (крахмал) и, в меньшей степени, моно-, ди- и олигосахаридами. При окислении в организме 1 г углеводов дает 4 ккал.

Физиологическая потребность в усвояемых углеводах для взрослого человека составляет 50-60% от энергетической суточной потребности (от 257 до 586 г/сут).

Физиологическая потребность в углеводах — для детей до года 13 г/кг массы тела, для детей старше года — от 170 до 420 г/сут.

4.2.1.3.1. Моно- и олигосахариды. К моносахаридам относятся глюкоза, фруктоза и галактоза. Олигосахариды — углеводы, молекулы которых содержат от 2 до 10 остатков моносахаридов. Основными представителями олигосахаридов в питании человека являются сахароза и лактоза. Потребление добавленного сахара не должно превышать 10% от калорийности суточного рациона.

4.2.1.3.2. Полисахариды. Полисахариды (высокомолекулярные соединения, образуются из большого числа мономеров глюкозы и других моносахаридов) подразделяются на крахмальные полисахариды (крахмал и гликоген) и неусвояемые полисахариды — пищевые волокна (клетчатка, гемицеллюлоза, пектины).

4.2.1.3.3. Пищевые волокна. В группу пищевых волокон входят полисахариды, в основном растительные, перевариваются в толстом кишечнике в незначительной степени и существенно влияют на процессы переваривания, усвоения, микробиоциноз и эвакуацию пищи.

Физиологическая потребность в пищевых волокнах для взрослого человека составляет 20 г/сут, для детей старше 3 лет — 10-20 г/сут.

4.2.2.1.1. Водорастворимые витамины.

Витамин С. Витамин С (формы и метаболиты аскорбиновой кислоты) участвует в окислительно-восстановительных реакциях, функционировании иммунной системы, способствует усвоению железа. Дефицит приводит к рыхлости и кровоточивости десен, носовым кровотечениям вследствие повышенной проницаемости и ломкости кровеносных капилляров. Среднее потребление варьирует в разных странах 70-170 мг/сут, в России — 55-70 мг/сут. Установленный уровень физиологической потребности в разных странах — 45-110 мг/сут. Верхний допустимый уровень потребления — 2000 мг/сут.

Уточненная физиологическая потребность для взрослых — 90 мг/сут.

Физиологическая потребность для детей — от 30 до 90 мг/сут.

Витамин В (тиамин). Тиамин в форме образующегося из него тиаминдифосфата входит в состав важнейших ферментов углеводного и энергетического обмена, обеспечивающих организм энергией и пластическими веществами, а также метаболизм разветвленных аминокислот. Недостаток этого витамина ведет к серьезным нарушениям со стороны нервной, пищеварительной и сердечно-сосудистой систем. Среднее потребление варьирует в разных странах 1,1-2,3 мг/сут., в США — до 6,7 мг/сут., России — 1,3-1,5 мг/сут. Установленный уровень потребности в разных странах — 0,9-2,0 мг/сут. Верхний допустимый уровень потребления не установлен.

Уточненная физиологическая потребность для взрослых — 1,5 мг/сут.

Физиологическая потребность для детей — от 0,3 до 1,5 мг/сут.

Читайте также:  Когда начинают давать витамин детям

Витамин В (рибофлавин). Рибофлавин в форме коферментов участвует в окислительно-восстановительных реакциях, способствует повышению восприимчивости цвета зрительным анализатором и темновой адаптации. Недостаточное потребление витамина В сопровождается нарушением состояния кожных покровов, слизистых оболочек, нарушением светового и сумеречного зрения. Среднее потребление в разных странах 1,5-7,0 мг/сут, в России — 1,0-1,3 мг/сут. Установленный уровень потребности в разных странах — 1,1-2,8 мг/сут. Верхний допустимый уровень потребления не установлен. При потреблении витамина В в размере 1,8 мг/сут и более у подавляющего большинства обследованных лиц концентрация рибофлавина в сыворотке крови находится в пределах физиологической нормы.

Уточненная физиологическая потребность для взрослых — 1,8 мг/сут.

Физиологическая потребность для детей — от 0,4 до 1,8 мг/сут.

Витамин В (пиридоксин). Пиридоксин в форме своих коферментов участвует в превращениях аминокислот, метаболизме триптофана, липидов и нуклеиновых кислот, участвует в поддержании иммунного ответа, процессах торможения и возбуждения в центральной нервной системе, способствует нормальному формированию эритроцитов, поддержанию нормального уровня гомоцистеина в крови. Недостаточное потребление витамина В сопровождается снижением аппетита, нарушением состояния кожных покровов, развитием гомоцистеинемии, анемии. Среднее потребление в разных странах 1,6-3,6 мг/сут., в Российской Федерации — 2,1-2,4 мг/сут. Недостаточная обеспеченность этим витамином обнаруживается у 50-70% населения Российской Федерации. Установленный уровень потребности в разных странах — 1,1-2,6 мг/сут. Верхний допустимый уровень потребления — 25,0 мг/сут.

Физиологическая потребность для взрослых — 2,0 мг/сут.

Физиологическая потребность для детей — от 0,4 до 2,0 мг/сут.

Ниацин. Ниацин в качестве кофермента участвует в окислительно-восстановительных реакциях энергетического метаболизма. Недостаточное потребление витамина сопровождается нарушением нормального состояния кожных покровов, желудочно-кишечного тракта и нервной системы. Среднее потребление в разных странах 12-40 мг/сут, в Российской Федерации — 13-15 мг/сут. Ниацин может синтезироваться из триптофана (из 60 мг триптофана образуется 1 мг ниацина). Установленный уровень потребности в разных странах — 11-25 мг/сут. Верхний допустимый уровень потребления ниацина — 60 мг/сут.

Физиологическая потребность для взрослых — 20 мг/сут.

Физиологическая потребность для детей — от 5 до 20 мг/сут.

Витамин В . Витамин B играет важную роль в метаболизме и превращениях аминокислот. Фолат и витамин B являются взаимосвязанными витаминами, участвуют в кроветворении. Недостаток витамина В приводит к развитию частичной или вторичной недостаточности фолатов, а также анемии, лейкопении, тромбоцитопении. Среднее потребление в разных странах 4-17 мкг/сут, в Российской Федерации — около 3 мкг/сут. Установленный уровень потребности в разных странах — 1,4-3,0 мкг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых — 3,0 мкг/сут.

Физиологическая потребность для детей — от 0,3 до 3,0 мкг/сут.

Фолаты. Фолаты в качестве кофермента участвуют в метаболизме нуклеиновых и аминокислот. Дефицит фолатов ведет к нарушению синтеза нуклеиновых кислот и белка, следствием чего является торможение роста и деления клеток, особенно в быстро пролифелирующих тканях: костный мозг, эпителий кишечника и др. Недостаточное потребление фолата во время беременности является одной из причин недоношенности, гипотрофии, врожденных уродств и нарушений развития ребенка. Показана выраженная связь между уровнем фолата, гомоцистеина и риском возникновения сердечно-сосудистых заболеваний. Среднее потребление в разных странах 210-400 мкг/сут. Установленный уровень потребности в разных странах — 150-400 мкг/сут. Верхний допустимый уровень потребления — 1000 мкг/сут.

Уточненная физиологическая потребность для взрослых — 400 мкг/сут.

Физиологическая потребность для детей — от 50 до 400 мкг/сут.

Пантотеновая кислота. Пантотеновая кислота участвует в белковом, жировом, углеводном обмене, обмене холестерина, синтезе ряда гормонов, гемоглобина, способствует всасыванию аминокислот и сахаров в кишечнике, поддерживает функцию коры надпочечников. Недостаток пантотеновой кислоты может вести к поражению кожи и слизистых. Среднее потребление в разных странах 4,3-6,3 мг/сут. Установленный уровень потребности в разных странах — 4-12 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых — 5 мг/сут (вводится впервые).

Физиологическая потребность для детей — от 1,0 до 5,0 мг/сут (вводится впервые).

Биотин. Биотин участвует в синтезе жиров, гликогена, метаболизме аминокислот. Недостаточное потребление этого витамина может вести к нарушению нормального состояния кожных покровов. Среднее потребление в разных странах 20-53 мкг/сут. Установленный уровень потребности в разных странах — 15-100 мкг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых — 50 мкг/сут (вводится впервые).

Физиологическая потребность для детей — от 10 до 50 мкг/сут (вводится впервые).

4.2.2.1.2. Жирорастворимые витамины.

Витамин А. Витамин А играет важную роль в процессах роста и репродукции, дифференцировки эпителиальной и костной ткани, поддержания иммунитета и зрения. Дефицит витамина А ведет к нарушению темновой адаптации («куриная слепота» или гемералопия), ороговению кожных покровов, снижает устойчивость к инфекциям. Среднее потребление в разных странах 530-2000 мкг рет. экв./сут, в Российской Федерации — 500-620 мкг рет. экв./сут. Установленный уровень физиологической потребности в разных странах — 600-1 500 мкг рет. экв./сут. Верхний допустимый уровень потребления — 3000 мкг рет. экв./сут. При потреблении витамина А в размере более 900 мкг рет. экв./сут у подавляющего большинства обследованных концентрация ретинола находится в пределах физиологической нормы.

Уточненная физиологическая потребность для взрослых — 900 мкг рет. экв./сут. Физиологическая потребность для детей — от 400 до 1000 мкг рет. экв./сут.

Бета-каротин. Бета-каротин является провитамином А и обладает антиоксидантными свойствами; 6 мкг бета-каротина эквивалентны 1 кг витамина А. Среднее потребление в разных странах 1,8-5,0 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых — 5 мг/сут. (вводится впервые).

Витамин Е. Витамин Е представлен группой токоферолов и токотриенолов, которые обладают антиоксидантными свойствами. Является универсальным стабилизатором клеточных мембран, необходим для функционирования половых желез, сердечной мышцы. При дефиците витамина Е наблюдаются гемолиз эритроцитов, неврологические нарушения. Среднее потребление в разных странах 6,7-14,6 мг ток. экв./сут, в Российской Федерации — 17,8-24,6 мг ток. экв./сут. Установленный уровень физиологической потребности в разных странах — 7-25 мг ток. экв./сут. Верхний допустимый уровень потребления — 300 мг ток. экв./сут.

Уточненная физиологическая потребность для взрослых — 15 мг ток. экв./сут.

Физиологическая потребность для детей — от 3 до 15 мг ток. экв./сут.

Витамин D. Основные функции витамина D связаны с поддержанием гомеостаза кальция и фосфора, осуществлением процессов минерализации костной ткани. Недостаток витамина D приводит к нарушению обмена кальция и фосфора в костях, усилению деминерализации костной ткани, что приводит к увеличению риска развития остеопороза. Среднее потребление в разных странах 2,5-11,2 мкг/сут. Установленный уровень потребности в разных странах — 0-11 мкг/сут. Верхний допустимый уровень потребления — 50 мкг/сут.

Уточненная физиологическая потребность для взрослых — 10 мкг/сут., для лиц старше 60 лет — 15 мкг/сут.

Физиологическая потребность для детей — 10 мкг/сут.

Витамин К. Метаболическая роль витамина К обусловлена его участием в модификации ряда белков свертывающей системы крови и костной ткани. Недостаток витамина К приводит к увеличению времени свертывания крови, пониженному содержанию протромбина в крови. Среднее потребление в разных странах 50-250 мкг/сут. Установленный уровень потребности в разных странах — 55-120 мкг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых — 120 мкг/сут (вводится впервые).

Физиологическая потребность для детей — от 30 до 120 мкг/сут (вводится впервые).

4.2.2.2. Минеральные вещества

4.2.2.2.1. Макроэлементы.

Кальций. Необходимый элемент минерального матрикса кости, выступает регулятором нервной системы, участвует в мышечном сокращении. Дефицит кальция приводит к деминерализации позвоночника, костей таза и нижних конечностей, повышает риск развития остеопороза. Среднее потребление в разных странах 680-950 мг/сут, в Российской Федерации — 500-750 мг/сут. Установленный уровень потребности 500-1200 мг/сут. Верхний допустимый уровень потребления 2500 мг/сут.

Уточненная физиологическая потребность для взрослых — 1000 мг/сут, для лиц старше 60 лет — 1200 мг/сут.

Физиологическая потребность для детей — от 400 до 1200 мг/сут.

Фосфор. В форме фосфатов принимает участие во многих физиологических процессах, включая энергетический обмен (в виде высокоэнергетического АТФ), регуляции кислотно-щелочного баланса, входит в состав фосфолипидов, нуклеотидов и нуклеиновых кислот, участвует в клеточной регуляции путем фосфорилирования ферментов, необходим для минерализации костей и зубов. Дефицит приводит к анорексии, анемии, рахиту. Оптимальное для всасывания и усвоения кальция соотношение содержания кальция к фосфору в рационе составляет 1:1. Среднее потребление в разных странах 1110-1570 мг/сут., в Российской Федерации 1200 мг/сут. Установленные уровни потребности 550-1400 мг/сут. Верхний допустимый уровень потребления не установлен.

Уточненная физиологическая потребность для взрослых — 800 мг/сут.

Физиологическая потребность для детей — от 300 до 1200 мг/сут.

Магний. Является кофактором многих ферментов, в т.ч. энергетического метаболизма, участвует в синтезе белков, нуклеиновых кислот, обладает стабилизирующим действием для мембран, необходим для поддержания гомеостаза кальция, калия и натрия. Недостаток магния приводит к гипомагниемии, повышению риска развития гипертонии, болезней сердца. Среднее потребление в разных странах 210-350 мг/сут., в Российской Федерации 300 мг/сут. Установленные уровни потребности 200-500 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых — 400 мг/сут.

Физиологическая потребность для детей — от 55 до 400 мг/сут.

Калий. Калий является основным внутриклеточным ионом, принимающим участие в регуляции водного, кислотного и электролитного баланса, участвует в процессах проведения нервных импульсов, регуляции давления. Среднее потребление в разных странах 2650-4140 мг/сут, в Российской Федерации 3100 мг/сут. Установленные уровни потребности 1000-4000 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых — 2500 мг/сут. (вводится впервые).

Физиологическая потребность для детей — от 400 до 2500 мг/сут. (вводится впервые).

Натрий. Основной внеклеточный ион, принимающий участие в переносе воды, глюкозы крови, генерации и передаче электрических нервных сигналов, мышечном сокращении. Клинические проявления гипонатриемии выражаются как общая слабость, апатия, головные боли, гипотония, мышечные подергивания. Среднее потребление 3000-5000 мг/сут. Установленный уровень потребности 1300-1600 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых — 1300 мг/сут (вводится впервые).

Физиологическая потребность для детей — от 200 до 1300 мг/сут (вводится впервые).

Хлориды. Хлор необходим для образования и секреции соляной кислоты. Среднее потребление 5000-7000 мг/сут. Установленный уровень потребности 2000-2500 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых — 2300 мг/сут (вводится впервые).

Физиологическая потребность для детей — от 300 до 2300 мг/сут (вводится впервые).

4.2.2.2.2. Микроэлементы.

Железо. Входит в состав различных по своей функции белков, в т.ч. ферментов. Участвует в транспорте электронов, кислорода, обеспечивает протекание окислительно-восстановительных реакций и активацию перекисного окисления. Недостаточное потребление ведет к гипохромной анемии, миоглобиндефицитной атонии скелетных мышц, повышенной утомляемости, миокардиопатии, атрофическому гастриту. Среднее потребление в разных странах 10-22 мг/сут., в Российской Федерации — 17 мг/сут. Установленные уровни потребностей для мужчин 8-10 мг/сут и для женщин 15-20 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых — 10 мг/сут. (для мужчин) и 18 мг/сут. (для женщин).

Физиологическая потребность для детей — от 4 до 18 мг/сут.

Цинк. Входит в состав более 300 ферментов, участвует в процессах синтеза и распада углеводов, белков, жиров, нуклеиновых кислот и в регуляции экспрессии ряда генов. Недостаточное потребление приводит к анемии, вторичному иммунодефициту, циррозу печени, половой дисфункции, наличию пороков развития плода. Исследованиями последних лет выявлена способность высоких доз цинка нарушать усвоение меди и тем способствовать развитию анемии. Среднее потребление 7,5-17,0 мг/сут. Установленные уровни потребности 9,5-15,0 мг/сут. Верхний допустимый уровень потребления 25 мг/сут.

Уточненная физиологическая потребность для взрослых — 12 мг/сут.

Физиологическая потребность для детей — от 3 до 12 мг/сут.

Йод. Участвует в функционировании щитовидной железы, обеспечивая образование гормонов (тироксина и трийодтиронина). Необходим для роста и дифференцировки клеток всех тканей организма человека, митохондриального дыхания, регуляции трансмембранного транспорта натрия и гормонов. Недостаточное поступление приводит к эндемическому зобу с гипотиреозом и замедлению обмена веществ, артериальной гипотензии, отставанию в росте и умственном развитии у детей. Потребление йода с пищей широко варьирует в различных геохимических регионах — 65-230 мкг/сут. Установленные уровни потребности 130-200 мкг/сут. Верхний допустимый уровень потребления 600 мкг/сут.

Физиологическая потребность для взрослых — 150 мкг/сут.

Физиологическая потребность для детей — от 60 до 150 мкг/сут.

Медь. Входит в состав ферментов, обладающих окислительно-восстановительной активностью и участвующих в метаболизме железа, стимулирует усвоение белков и углеводов. Участвует в процессах обеспечения тканей организма человека кислородом. Клинические проявления недостаточного потребления проявляются нарушениями формирования сердечно-сосудистой системы и скелета, развитием дисплазии соединительной ткани. Среднее потребление 0,9-2,3 мг/сут. Установленные уровни потребности 0,9-3,0 мг/сут. Верхний допустимый уровень потребления 5 мг/сут.

Физиологическая потребность для взрослых — 1,0 мг/сут. (вводится впервые).

Физиологическая потребность для детей — от 0,5 до 1,0 мг/сут. (вводится впервые).

Марганец. Участвует в образовании костной и соединительной ткани, входит в состав ферментов, участвующих в метаболизме аминокислот, углеводов, катехоламинов, необходим для синтеза холестерина и нуклеотидов. Недостаточное потребление сопровождается замедлением роста, нарушениями в репродуктивной системе, повышенной хрупкостью костной ткани, нарушениями углеводного и липидного обмена. Среднее потребление 1-10 мг/сут. Установленные уровни потребности 2-5 мг/сут. Верхний допустимый уровень потребления 5 мг/сут.

Физиологическая потребность для взрослых — 2 мг/сут. (вводится впервые).

Селен. Эссенциальный элемент антиоксидантной системы защиты организма человека, обладает иммуномодулирующим действием, участвует в регуляции действия тиреоидных гормонов. Дефицит приводит к болезни Кашина-Бека (остеоартроз с множественной деформацией суставов, позвоночника и конечностей), болезни Кешана (эндемическая миокардиопатия), наследственной тромбастении. Среднее потребление 28-110 мкг/сут. Установленные уровни потребности 30-75 мкг/сут. Верхний допустимый уровень потребления 300 мкг/сут.

Физиологическая потребность для взрослых — 55 мкг/сут. (для женщин); 70 мкг/сут. (для мужчин) (вводятся впервые).

Физиологическая потребность для детей — от 10 до 50 мкг/сут. (вводится впервые).

Хром. Участвует в регуляции уровня глюкозы крови, усиливая действие инсулина. Дефицит приводит к снижению толерантности к глюкозе. Среднее потребление 25-160 мкг/сут.

Установленные уровни потребности 30-100 мкг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых — 50 мкг/сут. (вводится впервые).

Физиологическая потребность для детей от 11 до 35 мкг/сут. (вводится впервые).

Молибден. Является кофактором многих ферментов, обеспечивающих метаболизм серосодержащих аминокислот, пуринов и пиримидинов. Среднее потребление 44-500 мкг/сут. Установленные уровни потребности 45-100 мкг/сут. Верхний допустимый уровень потребления 600 мкг/сут.

Физиологическая потребность для взрослых — 70 мкг/сут. (вводится впервые).

Фтор. Инициирует минерализацию костей. Недостаточное потребление приводит к кариесу, преждевременному стиранию эмали зубов. Среднее потребление 0,5-6,0 мг/сут. Установленные уровни потребности 1,5-4,0 мг/сут. Верхний допустимый уровень потребления 10 мг/сут.

Рекомендуемая физиологическая потребность для взрослых — 4 мг/сут. (вводится впервые).

Физиологическая потребность для детей — от 1,0 до 4,0 мг/сут. (вводится впервые).

Участвует в обмене веществ, вместе с холином участвует в синтезе лецитина, оказывает липотропное действие.

Рекомендуемые уровни потребления: для взрослых — 500 мг/сут.; для детей 4-6 лет — 80-100 мг/сут.; для детей 7-18 лет — от 200 до 500 мг/сут. (вводятся впервые).

Играет важную роль в энергетическом обмене, осуществляя перенос длинноцепочечных жирных кислот через внутреннюю мембрану митохондрий для последующего их окисления и тем самым снижает накопление жира в тканях. Дефицит карнитина способствует нарушению липидного обмена, в т.ч. развитию ожирения, а также развитию дистрофических процессов в миокарде.

Рекомендуемые уровни потребления: для взрослых — 300 мг/сут.; для детей 4-6 лет — 60-90 мг/сут.; для детей 7-18 лет — от 100 до 300 мг/сут. (вводятся впервые).

4.3.1.3. Коэнзим Q10 (убихинон)

Соединение, участвующее в энергетическом обмене и сократительной деятельности сердечной мышцы.

Рекомендуемый уровень потребления для взрослых — 30 мг/сут. (вводится впервые).

Оказывает липотропный эффект, детоксицирующее действие, участвует в обмене аминокислот и жирных кислот.

Рекомендуемый уровень потребления для взрослых — 30 мг/сут. (вводится впервые).

4.3.1.5. Метилметионинсульфоний (витамин U)

Участвует в метилировании гистамина, что способствует нормализации кислотности желудочного сока и проявлению антиаллергического действия.

Рекомендуемый уровень потребления для взрослых — 200 мг/сут. (вводится впервые).

4.3.1.6. Оротовая кислота (витамин В )

Участвует в синтезе нуклеиновых кислот, фосфолипидов и билирубина.

Рекомендуемый уровень потребления для взрослых — 300 мг/сут. (вводится впервые).

4.3.1.7. Парааминобензойная кислота

Участвует в метаболизме белков и кроветворении.

Рекомендуемый уровень потребления для взрослых — 100 мг/сут. (вводится впервые).

Входит в состав лецитина, играет роль в синтезе и обмене фосфолипидов в печени, является источником свободных метильных групп, действует как липотропный фактор. В обычном рационе содержится 500-900 мг. Верхний допустимый уровень потребления — 1000-2000 мг/сут. для детей до 14 лет, 3000-3500 мг/сут. для детей старше 14 лет и взрослых.

Рекомендуемые уровни потребления: для взрослых — 500 мг/сут.; для детей 4-6 лет — от 100 до 200 мг/сут.; 7-18 лет — от 200 до 500 мг/сут. (вводятся впервые).

Входит в состав витамина В . Активирует ферменты обмена жирных кислот и метаболизма фолиевой кислоты. Среднее потребление в Российской Федерации 10 мкг/сут. Верхний допустимый уровень потребления не установлен.

Рекомендуемый уровень потребления для взрослых 10 мкг/сут. (вводится впервые).

Кремний входит в качестве структурного компонента в состав гликозоаминогликанов и стимулирует синтез коллагена. Среднее потребление 20-50 мг/сут. Верхний допустимый уровень потребления не установлен.

Рекомендуемый уровень потребления для взрослых 30 мг/сут. (вводится впервые).

Индолы относятся к продуктам гидролиза глюкозинолатов растений семейства крестоцветных. Биологическая активность пищевых индолов (индол-3-карбинол, аскорбиген, индол-3-ацетонитрил) связана с их способностью индуцировать активность монооксигеназной системы и некоторых ферментов II фазы метаболизма ксенобиотиков (глутатион-трансферазы). Имеются данные эпидемиологических наблюдений о существовании определенной связи между высоким уровнем потребления индол-3-карбинола и снижением частоты риска развития некоторых видов гормонозависимых опухолей.

Рекомендуемый уровень потребления для взрослых 50 мкг/сут (вводится впервые).

Широко представлены в пищевых продуктах растительного происхождения. Регулярное потребление этих соединений приводит к достоверному снижению риска развития сердечно-сосудистых заболеваний. Высокая биологическая активность флавоноидов обусловлена наличием антиоксидантных свойств. Установлена также важная роль флавоноидов в регуляции активности ферментов метаболизма ксенобиотиков.

Рекомендуемые уровни потребления: для взрослых — 250 мг/сут. (в т.ч. катехинов — 100 мг/сут.), для детей 7-18 лет — от 150 до 250 мг/сут. (в т.ч. катехинов от 50 до 100 мг/сут.) (вводятся впервые).

Содержатся в бобовых. Не являясь стероидными соединениями, они способствуют нормализации холестеринового обмена, оказывают антиоксидантное действие, способствуют нормализации обмена кальция, гормонального баланса.

Рекомендуемый уровень потребления для взрослых 50 мг/сут. (вводится впервые).

Растительные стерины (фитостерины) содержатся в различных видах растительной пищи человека и в морепродуктах. Они являются обязательным компонентом растительных масел. Существенно снижают уровень свободного холестерина в липопротеидах низкой плотности, способны вытеснять холестерин из мембранных структур. Потребление фитостеринов 150-450 мг/сут.

Рекомендуемый уровень потребления растительных стеринов (фитостеринов) для взрослых 300 мг/сут (вводится впервые).

Глюкозамин сульфат — полисахарид хрящевой ткани животных и рыб, входит в состав гликопротеинов. Естественный компонент пищи человека. Участвует в формировании ногтей, связок, кожи, костей, сухожилий, суставных поверхностей, клапанов сердца и др. Положительное действие глюкозамин сульфата на организм человека и функциональную активность опорно-двигательного аппарата доказано в клинических исследованиях.

Рекомендуемый уровень потребления для взрослых 700 мг/сут. (вводится впервые).

Нормы физиологических потребностей в энергии и пищевых веществах для мужчин

Группа физической активности (коэффициент физической активности)

источник