Меню Рубрики

Витамин д для почек у детей

Витамин Д или холекальциферол является жирорастворимым элементом, считается необходимым для нормального развития организма новорожденного. Главная функция – отвечает за всасывание из кишечника в кровь кальция и дальнейшее его встраивание в костный скелет. Достаточное количество обеспечивает прочность костей и их планомерное развитие.

К другим положительным характеристикам можно отнести:

  • участвует в выработке пептидов, которые защищают от микробов, регулируют уровень инсулина и кровяное давление, поддерживают нервную систему;
  • уменьшает вероятность воспалительных процессов;
  • снижает вероятность возникновения онкологии, рассеянного склероза, сахарного диабета (читайте подробнее про симптомы СД у детей), ревматического артрита;
  • укрепляет иммунитет.

Первые признаки нехватки витамина Д у грудничков:

  • потливость стоп, ладошек и волосяной части головы;
  • отсутствие аппетита;
  • постоянное нервное возбуждение;
  • залысины на затылке;
  • частая бессонница.

Так проявляется первая, самая легкая стадия рахита. При обнаружении этих симптомов стоит незамедлительно начать профилактику заболевания. В противном случае неизбежно развитие второй стадии.

Симптомы второй стадии рахита:

  • существенное замедление роста зубов;
  • деформация костей;
  • нарушение работы внутренних органов;
  • слабый мышечный тонус – гипотонус у грудничка.

Как результат – отставание малыша в развитии от его сверстников. Если же и на этой стадии родителями не будут приняты меры по устранению нехватки витамина Д у грудничков, то следует ожидать более серьезных патологических изменений.

Проявления тяжелой стадии рахита:

  • искривление ног в форме букв «О» или «Х»;
  • лягушачий живот;
  • значительное увеличение размера головы по отношению к телу;
  • возникновение на темени и лбу бугров, лоб становится выпуклым;
  • деформация ребер и всего скелета;
  • слабое умственное развитие.

Искривление ног вызовет искривление таза и скелета в целом, что негативно отразится на будущей возможности девочки выносить и родить здорового ребенка. Полную версию статьи про симптомы и лечение рахита у детей читайте здесь.

Витамин Д вырабатывается в кожном покрове человека при воздействии на него солнечных лучей. После этого в почках и печени происходит его превращение в метаболит Д3.

Чтобы указанный процесс происходил, необходимо условие – чистый воздух. В странах с повышенным уровнем пыли и загазованности существует реальная проблема массового рахита среди детей.

Так обстоит ситуация в связи с невозможностью проходить через загрязненную атмосферу спектров лучей, способствующих выработке и накоплению элемента. Еще одним источником является пища. Содержится элемент в таких продуктах:

  • морепродукты;
  • печень рыбы;
  • сельдь, рыбий жир, скумбрия, тунец макрель;
  • говядина;
  • сырые желтки (помните про опасность заболевания сальмонеллезом);
  • сливочное масло;
  • картофель, петрушка;
  • овсянка;
  • молоко.

В молоке содержание витамина мизерное, при этом в его составе присутствует фосфор, мешающий усваиванию компонента.

Третий источник восполнения дефицита элемента в организме – прием синтетического препарата в качестве добавки к пище.

Несмотря на не самую лучшую экологическую ситуацию в стране и на то, что не все кормящие мамы употребляют в еду положенное количество правильной пищи, не всегда стоит острая необходимость в приеме синтетического заменителя витамина.

Если нижеперечисленные условия относятся к вашему случаю, то стоит проконсультироваться с педиатром, нужно ли давать витамин Д грудничку:

  • у малыша отсутствуют первичные признаки заболевания рахитом;
  • ежедневно совершаются 2-3-х часовые прогулки на свежем воздухе (как летом, так и зимой);
  • среда обитания – не самая северная часть страны;
  • не используется солнцезащитный крем;
  • небо не затянуто тучами перманентно более 2 недель;
  • ребенок имеет светлый тон кожи (не темнокожий, не смуглый);
  • меню кормящей матери сбалансировано и богато продуктами, содержащими природный витамин Д.

Все педиатры едины во мнении о том, что грудное вскармливание является самой лучшей профилактикой возникновения рахита у детей. Согласно многочисленным исследованиям, малыши, питающиеся естественно – менее подвержены развитию заболевания.

Солнце и правильная еда – естественный путь к восполнению дефицита витамина

Важно сохранять как можно дольше грудное молоко, которое так необходимо для растущего организма. Если у мамы пропала молоко, рекомендации из этой статьи помогут восстановить лактацию. ВОЗ рекомендует давать малышу грудь как минимум до 2 лет. Какими витаминными комплексами разнообразить рацион мамы читайте в этой статье.

Также имеет значение и своевременный ввод прикорма в рацион грудничка. Средний возраст первого знакомства со взрослой пищей – 6 месяцев. Постепенно вводится в меню:

  • кисломолочные продукты;
  • гречневая и овсяная каши;
  • рыба;
  • говяжья печень;
  • животный белок (разнообразное мясо);
  • сливочное, подсолнечное и оливковое масло.

Как принимать витамин Д грудничкам? Самостоятельное определение дозы синтетической добавки в рацион чревато негативными последствиями. Необходимо обсудить с педиатром, нужен ли прием витамина малышу, если да – в какой дозировке?

Обычно препарат назначается малышам до года, а также всем деткам в осенне-зимний период. Стандартная суточная доза составляет 500 МЕ витамина, прием осуществляется утром во время или после завтрака. Главное правило – получить добавку до 12 часов дня.

В некоторых случаях, когда ребенок находится на искусственном вскармливании, стоит внимательно изучать состав смесей. В основном их большинстве производитель уже добавляет витамин Д в свой продукт. Чтобы не допустить передозировки – проконсультируйтесь с врачом о целесообразности приема, длительности и дозировки препарата.

Как и у любого лекарственного средства, у витамина Д имеется ряд противопоказаний к приему:

  • высокий уровень кальция в крови;
  • заболевания почек и печени;
  • проблемы с сердечно-сосудистой системой;
  • язва двенадцатиперстной кишки и желудка;
  • активная форма туберкулеза.

Родителей, у детей которых произошло ранее закрытие большого родничка, волнует вопрос, можно ли в таком случае давать витамин Д грудничкам и сколько? В результате проведенных исследований связи между этими двумя процессами не обнаружилось, соответственно назначение препарата разрешено в стандартной дозе.

Есть два вида витамина Д, которые бывают на:

Какой все таки витамин Д для грудничков лучше? Хоть вреда в использовании масляного раствора практически нет, побочных эффектов тоже, сегодня педиатры предпочитают выписывать раствор на водной основе. Объясняется это его характеристиками:

  • быстро всасывается;
  • имеет более продолжительное действие;
  • разрешен детям с проблемами ЖКТ;
  • исключена возможность передозировки, так как 1 капля содержит ровно 500 МЕ витамина, что равносильно суточной профилактической дозе.

Несмотря на перечисленные преимущества водного раствора, витамин Д на масляной основе все же считается физиологичным и стимулирует организм к выработке собственного витамина Д. Поскольку витамин Д является жирорастворимым, то очевиден факт того, что масляный раствор будет более эффективным.

Название, форма выпуска (раствор), разрешенный возраст Способ применения, дозировка Противопоказания Побочные реакции
(возникающие в случае передозировки)
Средняя цена, руб.
АКВАДЕТРИМ (Витамин Д3), капли (водный раствор), с 4-х недельного возраста 500-1500 МЕ (1-3 капли) в сутки с целью профилактики, 2000-5000 МЕ (4-10 капель) – лечение.

Курс терапии 1-1,5 месяца.

  • Гипервитаминоз Д,
  • повышенная концентрация кальция в крови,
  • индивидуальная чувствительность к компонентам препарата,
  • острые и хронические заболевания печени и почек,
  • мочекаменная болезнь,
  • повышенное выделение кальция с мочой,
  • почечная недостаточножть,
  • саркоидоз,
  • активная форма туберкулеза легких.
Индивидуальная чувствительность к компонентам препарата, гипервитаминоз Д 10 мл – от 200 ВИГАНТОЛ (Витамин Д3), капли (масляный раствор), с 2-х недельного возраста 1-2 капли в день с целью профилактики, 2-8 капель – терапия.

Курс лечения определяется врачом.

10 мл – от 180 ДЕВИСОЛ ДРОПС Д3 (Devisol Drops D3), капли (масляный раствор), с 6 месяцев Дети до 2 лет – 10 мкг в сутки (5 капель), от 2 лет — 7,5 мкг в сутки (4 капли). 10 мл – от 420 COLIEF VITAMIN D3 DROPS (КОЛИФ ВИТАМИН Д3), капли (масляный раствор), с 18 месяцев Детям от 1,5 до 3 лет по 2 капли 1 раз в сутки во время еды. Детям старше 3 лет по 5 капель 1 раз в сутки во время еды. 20 мл – от 770 КОМПЛИВИТ КАЛЬЦИЙ ДЗ ДЛЯ МАЛЫШЕЙ (порошок для приготовления суспензии для приема внутрь), 0+ Детям от 1 года – 5-10 мл раствора в сутки, детям до 1 года – по 5 мл в сутки.

Курс профилактики – 1 месяц, более продолжительный курс – по предписанию врача.

флакон 43 г – от 230

А квадетрим – витамин Д как для профилактики, так и лечения рахита у грудничков. Лечение препаратом проводить при постоянном контроле уровня кальция, фосфора и щелочной фосфатазы в крови и моче пациента. Максимальная доза в 10 капель прописывается, если начался ярко выраженный процесс костных изменений. При появлении у грудничка симптомов переизбытка витамина Д необходимо прекратить прием препарата и продуктов, богатых кальцием. Начать усиленный прием витаминов А, В и С.

В игантол – витамин Д для грудничков в каплях. Препарат принимают внутрь с молоком или другой жидкостью. При профилактике рахита доношенным здоровым детям назначают по 1 капле, недоношенным детям – по 2 капли ежедневно. Препарат следует принимать в течение первого и второго года жизни, особенно в зимние месяцы.

Д евисол Дропс Д3 (Devisop Drops D3) – финский витамин Д для грудничков в форме капель на основе кокосового масла, хорошо усваивается организмом. Препарат не содержит красителей, консервантов и ароматизаторов. Обладает нейтральным вкусом и может смешиваться с пищей или напитками. Возможно введение капель непосредственно в полость рта ложкой или пипеткой.

К олиф Витамин Д3 – масляный витамин Д для грудничков. Принимать во время еды, добавив к любому питью или пище комнатной температуры, либо непосредственно в рот. Держать флакон вертикально для правильного дозирования.

К омпливит кальций Д3 для малышей – во избежание передозировки не применять одновременно с витаминными комплексами, содержащими кальций и витамин Д3. При профилактическом применении витамина необходимо иметь в виду возможность передозировки, особенно у детей (не следует назначать более 10-15 мг в год).

Способ приготовления суспензии из порошка:

  • Во флакон, содержащий порошок, добавить прокипяченной и охлажденной воды на 2/3 объема флакона, тщательно перемешать (в течение 1-2 минут).
  • Добавить прокипяченную и охлажденную воду до объема 100 мл (до горловины флакона) и повторно перемешать.
  • Перед каждым приемом взбалтывать содержимое флакона.
  • Приготовленную суспензию хранить в защищенном от света месте, при температуре не выше 15 ºС (в холодильнике). Не замораживать.

Как правильно давать витамин Д грудничку, чтобы не навредить? Общие правила приема препарата с целью профилактики рахита:

Если врач назначил профилактический прием – соблюдайте дозировку и общие правила употребления препарата

  • Профилактика проводится в осенние и зимние месяцы, по предписанию педиатра. Чтобы легче запомнить – в месяцы, в названии которых присутствует буква «Р».
  • Профилактическая доза составляет примерно 500 МЕ витамина, но стоит учитывать рекомендации врача и официальной инструкции к препарату.
  • Прием витамина осуществлять в первой половине дня во время или после завтрака.
  • Если малыш пребывает на искусственном вскармливании, предупредить об этом педиатра. В некоторых смесях уже добавлен витамин Д.
  • Если назначена лечебная доза, то правильным будет делать перерыв длиною в неделю после каждого месяца использования средства.
  • Не стоит хранить препарат в солнечном месте, при высоких температурах.
  • При обнаружении у грудничков первых симптомов передозировки витамина Д – немедленно прекратить прием и показать ребенка доктору.

Симптомы передозировки витамина Д у грудничков:

  1. полиурия (частое мочеиспускание);
  2. диспепсия (нормальная деятельность желудка нарушена, пищеварение – затруднённое и болезненное);
  3. утрата эластичности кожного покрова;
  4. отсутствие аппетита;
  5. сухой язык;
  6. постоянная жажда;
  7. частая рвота;
  8. на смену поносу приходит запор, и наоборот;
  9. происходит повышение температуры тела (держите в аптечке жаропонижающие свечи, их список представлен здесь);
  10. резкая потеря веса;
  11. иногда – замедление пульса, затруднение дыхания, судороги, увеличенная печень.

Чтобы допустить передозировку и привести к указанной симптоматике – дозировка должна быть превышена как минимум в 200 раз.

Кроме передозировки существует риск того, что некоторые малыши имеют повышенную чувствительность к препарату или его компонентам (аллергия на витамин Д у грудничков). Перед началом приема – проверить индивидуальную переносимость. В случае возникновения побочных реакций или нежелательных симптомов – прекратить курс и обратиться к педиатру.

Если у грудничка присутствует в организме дефицит – нарушается процесс обмена фосфора и кальция, ухудшается окостенение скелета, замедляется рост зубов. Эти процессы приводят к возникновению рахита. Недостаток витамина Д особенно опасен для грудничков до 1 года, поскольку именно в этот период наблюдается наиболее стремительный скачок в росте. Это особенно подчеркивает Е.О. Комаровский в видео сюжете:

источник

раз уж ссылок тут давать нельзя копирну текст с комментариями..

вчера позвонила мне сотрудница, в разговоре речь зашла о вит Д3 так вот, что она ме сказала:«моя мама педиатр со стажем 40 лет и за время ее практитки несколько рз было введение профилактического приема витД, НО она ни своим детям, ни внукам (а их 4) ни детям со своего участка его НЕ прописывалат.к. он дает ОСЛОЖНЕНИЕ на почки!!» и я призадумалась, я то даю как мне врач наша казала 1 капля в день… решила порыться в нете и вот что нашла «

1.Согласно международной номенкла-туре все представители группы витамина Д относятся к секостероидам .

Суточная доза витамина Д для человека в среднем составляет 400МЕ в возрасте 6 месяцев , 600МЕ – в 3 года, 800МЕ – старше 3-х лет.

Витамин Д и его метаболиты относятся к веществам с высокой биологической активностью, и передозировки этих стероидов оказывают токсическое действие на организм. Уже в миллиграммовых количествах витамин Д за короткое время может вызвать необратимые нарушения и гибель. Поражение почек служит одним из наиболее быстро развивающихся симптомов Д-гипервитаминоза. Особенно сильно поражаются почки детей младшего возраста и молодняка животных. Одной из важных причин развития почечной патологии служит гиперкальциемия. Гистологические исследования почек крыс, длительно получавших высокие дозы витамина Д, выявили атрофию почечных капилляров, расширение канальцев и образование перерожденной ткани, напоминающей гиалиновый хрящ.

2.Широкая профилактика рахита может также привести к передозировке препаратов витамина Д.

Патологоанатомические изменения, обнаруженные у погибших от гипервитаминоза Д, заключаются в отложении извести в различных тканях и органах. Как макроскопическая, так и микроскопическая картина интоксикации сходна у детей и взрослых, хотя смертность более высока среди детей.

Отмечается диффузная кальцификация синовиальных оболочек суставов, почек, миокарда, легких, бронхов, трахеальных хрящей, околощитовидных желез, поджелудочной железы, секреторной части желудка, кожи, лимфатических узлов, больших и средних артерий, конъюктивы и роговицы глаз, твердой мозговой оболочки и т.д.Наиболее серьезный процесс – поражение почек, в результате чего может наступить уремия.

Чем быстрее всасывается препарат витамина Д, тем он токсичнее . Тучным людям и лежачим больным, вследствие замедленного обмена веществ нельзя давать большие дозы. Опасно назначение витамина Д при заболеваниях почек и сердечно-сосудистых заболеваниях.

ну с дрйгой стороны ы нете моно и положительной информаци о витД, вот и не знаю, что делать то теперь? а Вы что думаете?

и еще она(сотрудница) сказла, что кто-то защитил диссертацию по этой теме и теперь опять проводят эксперимент

Если не принимать витамин Д летом, то не будет никакой передозировки. Его хорошо деткам давать в холодный период. Во мы с начала осени пьем Минисан Д3. И здоровенькие совсем)))))))))

очень страшная правда! и нам тоже сказали пить его по 1-2 капли каждый день, вот мы и употребляем практически с рождения то по 1 капле то по 2… нам уже третий месяц идет, надеюсь еще не поздно бросить! больше не будем! спасибо за полезную статью!

где-то в 2-3 месяца у сынишки стала очень шероховатая кожа, ничем не могли ее вывести. Обратилтсь к дерматологу, так она нам сказала, что это аллергия и дает её именно витамин Д3 и добавила, что его употреблять нужно только, когда есть симптомы рахита, а здоровым деткам еще и на ГВ вообще не недо давать, посколько, ребенок получает все витамины от матери.

Д3 даже мне аллергию дал во время беременности, а вот сегодня педиатр прописала Д3, тоже не буду давать малышу.

я купила Аквадетрим… но так и не даю… нам почти 4 мес. З это время доча выпила 3 капельки))) с перерывом в месяц))). Мне кажется, чито у моей дочи нет рахита, а врач говорит, что рахит есть у ВСЕХ детей, проживающих в Москве. После прочтения твоей статьи я не буду больше давать вит. Д, т.к. здоровье почек — это моя большая проблема… (мне удалили почку 5 лет назад)

я в шоке, тк давала с 2 мес до 6 мес., потом перестала, а сейчас мишутке 1,11 и ему ставят пиелонефрит на фоне камня в правой почке, есть еще вариант что мы утром и вечером давали агушу кисломолочную а там тоже дозы увеличены по витаминам и кальцию, да еще творожки агушины… других вариантов пока не находим, от куда у малявы эта гадость.

источник

проф. Круглов Сергей Владимирович (слева), Кутенко Владимир Сергеевич (справа)

Автор проекта: Круглов Сергей Владимирович, профессор, заслуженный врач России, доктор медицинских наук, врач высшей квалификационной категории

Редактор страницы: Кутенко Владимир Сергеевич

Кудинов Владимир Иванович

Кудинов Владимир Иванович, Кандидат медицинских наук, Доцент Ростовского Государственного медицинского университета, Председатель ассоциации эндокринологов Ростовской области, Врач – эндокринолог высшей категории

Читайте также:  Эффективные витамины для часто болеющих детей

Джериева Ирина Саркисовна

Джериева Ирина Саркисовна Доктор медицинских наук, доцент, врач-эндокринолог

ГЛАВА 4 МЕТАБОЛИЗМ ВИТАМИНА D И ПОЧКИ

Давно известно, что тяжелые почечные заболевания часто со­провождаются поражениями костной ткани, включая рахит или остеомаляцию, а также замедлением всасывания кальция в ки­шечнике. Рахит или остеомаляция в Сочетании с замедлением всасывания кальция в кишечнике являются и признаками недостаточности витамина D. За последние 15 лет в результате появления множества новых сведений об эндокринной природе витамина D выяснилась роль почек в его метаболизме. Кроме того, необходимость лечения все большего числа больных с хро­нической почечной недостаточностью до и в процессе поддержи­вающего их жизнь диализа заставила клинически оценить эти новые сведения и широко использовать их в практической ме­дицине. Ниже обобщены современные представления о метабо­лизме и действии витамина D, причем специальное внимание уделяется роли почек в этих процессах и анализу нарушений метаболизма витамина D в условиях патологии.

ИСТОРИЧЕСКИЙ ОЧЕРК

История витамина D началась с выяснения возможных попу­ляционных особенностей в строении скелета и изучения патоге­неза рахита как костного заболевания. Согласно описанию Ге­родота (484—425 гг. до н. э.), у убитых египетских солдат, ко­торые по обычаю с детства не закрывали голов от солнца, чере­па были твердыми, тогда как у персидских солдат, всегда носив­ших тюрбаны, черепа оказывались мягкими. Такие наблюдения расценивались как указания на то, что солнечное освещение мо­жет обеспечивать толщину и твердость костей. Медицинской проблемой рахит становится только в XVII в., когда в Англии и Северной Европе образуются города. Вскоре появились и случайные наблюдения об излечивающем рахит действии рыбь­его жира. К сожалению, широкое применение этого народного лечебного средства задержалось более чем на столетие, пока не сформировалось представление о важности веществ, присутст­вующих в пище в следовых количествах (в частности, витами­нов).

К концу XIX в. географические исследования вновь указа­ли на распространенность рахита в городах, население которых испытывало недостаток солнечного света. Изучение скелета умерших больных рахитом позволило установить сниженную минерализацию костей и меньшее содержание кальция и фос­фора в них, тогда как исследования обмена веществ обнаружи­ли низкую скорость всасывания кальция и фосфора в кишечни­ке таких больных.

К концу I мировой войны на пути к пониманию природы ра­хита было сделано два главных шага. Mellanby разработал метод воспроизведения рахита у щенков, показав, что это забо­левание в эксперименте излечивается жиром печени трески. Та­кие наблюдения отчетливо указывали на присутствие в диете антирахитного фактора. Примерно в то же время Huldchinsky, удалось вылечить детей с помощью облучения их под ртутной лампой. Более того, у 1 ребенка облучение только од­ной руки обусловило появление рентгенографических признаков улучшения состояния костей всего скелета. Это наблюдение яви­лось первым четким доказательством возможности образования в организме циркулирующего и имеющего, по-видимому, гормо­нальную природу антирахитного фактора. Впоследствии опыты на крысах с экспериментальным рахитом показали, что к изле­чению приводит облучение не только самих крыс, но и их пищи. Присутствующий в диете антирахитный фактор оказался жирорастворимым веществом, отличающимся от витамина А. В 1932 г. было установлено строение витамина D-секостерина, образующегося при облучении пищевых продуктов, а в 1936 г. была определена и структура природного витамина D. Взятые вместе, эти наблюдения сформировали основу современного представления, согласно которому витамин D одновре­менно является гормоном и (в условиях ограниченного солнеч­ного освещения) витамином.

ХИМИЧЕСКОЕ СТРОЕНИЕ ВИТАМИНА D

На рис. 39 представлена структура витамина D3 — холекальциферола, а также система нумерации положений углеродных атомов в его молекуле. Витамин D2 — эргокальдиферол — отли­чается лишь присутствием двойной связи между 22-м и 23-м углеродным атомом и дополнительной метильной группы в по­ложении 24. Молекулярная масса витамина D3 равна 384. Он нерастворим в воде, но легко растворяется в органических растворителях и жирах. Витамин весьма чувствителен к окислению на воздухе или перекисями в растворе и разрушается в кислой среде. Недавно был опубликован обзор, посвященный строению и конфигурации молекул витамина D и аналогичных секостероидов.

МЕТАБОЛИЗМ ВИТАМИНА D

Подробное выяснение путей метаболизма витамина D3 ста­ло возможным лишь после его химического синтеза с изотопной меткой, разработки хроматографических методов разделения его метаболитов и создания способов биологической оценки эффектов как самого витамина D3, так и его метаболитов. 7-Дегидрохолестерин образуется в коже под действием фермента и в ус­ловиях ультрафиолетового облучения (в основном при длине волн 300—310 нм) превращается в превитамин D3. Послед­ний спонтанно подвергается температурной изомеризации в ви­тамин D3, который затем соединяется с сывороточным витамин D-связывающим глобулином (ДСГ). Комплекс витамина D3 с белком переносится кровью в печень, где витамин D3 гидроксилируется по 25-му углеродному атому, образуя основную фор­му витамина в плазме — 25-OH-D3. Это вещество в свою очередь транспортируется ДСГ в почки, где оно может подвер­гаться дальнейшему гидроксилированию в гормональную фор­му витамина D3—l,25-(OH)2-D3.

Синтез витамина D3 в коже

Современные представления о синтезе витамина D3 в коже схематизированы на рис. 41. Как уже отмечалось, превитамин D3 образуется в коже из 7-дегидрохолестерина. Кожа содержит большие количества этого предшественника, благодаря чему не лимитируется скорость образования превитамина. Holick и соавт. облучали кожу человека in vitro и нашли, что воз­действие света, имитирующее солнечное облучение близ эквато­ра, уже за несколько часов может обеспечить максимальное образование превитамйна D3 в базально-клеточных слоях кожи. Некоторое время назад уже было высказано предположение, что темная пигментация кожи может полностью исключать син­тез в ней витамина D. Более поздние исследования Holick и соавт. показали, что с увеличением пигментации кожи удлиняется срок воздействия света, необходимый для максимального образования превитамина D3. Такое замедление образования превитамина D3 могло бы, следовательно, снижать синтез вита­мина D3 в сильно пигментированной коже в условиях ограничен­ности солнечного освещения. Превитамин D3 затем подвергается в коже температурно-зависимому неферментативному превра­щению и витамин D3. Для превращения 50% имеющегося в ко­же провитамина Da в витамин D3 требуется примерно 1 сут. После этого витамин D3 связывается с ДСГ и попадает в кровь. Подробности механизма образования комплекса ДСГ — D3 и его проникновения в кровь остаются неизвестными.

Витамин D-связывающий глобули­н синтезируется в печени и идентичен групповому специфическому белку человека (Gc), давно известному генети­кам. Генетические варианты этого белка, по-видимому, не различаются по способности связывать стерины группы витами­на D. Поскольку суммарная концентрация всех метаболитов витамина D в сыворотке в норме не достигает 10 -7 М (см. ни­же), а молярная концентрация ДСГ примерно на два порядка выше, то очевидно, что такой избыток связываю­щего белка способствует сохранению витамина D и его метабо­литов в условиях ограниченного их поступления в организм предотвращает токсичность витамина D при увеличении его потребления или синтеза в коже. ДСГ не только участвует в транспорте метаболитов витамина D в крови, но и присутствует в форме комплекса с цитозольным белком в клетках многих тканей. Недавно этот белок был индентифицирован как ак­тин. Предполагается, таким образом, что ДСГ может уча­ствовать в переносе секостероидов из внеклеточной жидкости внутрь клеток. С другой стороны, основной детерминантой транспорта стероидов в клетки может быть концентрация сво­бодных (не связанных с ДСГ) метаболитов витамина D.

Циркулирующий в крови витамин D быстро захватывается печенью, где он подвергается гидроксилированию по 25-му углеродному атому с образованием 25-OH-D3. Гидроксилирование осуществляется в основном микросомной монооксигеназой со смешанной функцией и требует присутствия молекуляр­ного кислорода, флавопротеина и цитохрома Р-450. Км этого фермента составляет примерно 10 -8 М. Активность микросомной гидроксилазы при введении витамина D3 снижается. Кроме того, печень содержит и митохондриальную 25-гидроксилазу, требующую в качестве кофакторов железосеросодержащий бе­лок и цитохром Р-450, но обладающую гораздо большей Км (примерно 10 -6 М). Это свидетельствует о значении данно­го фермента в продукции 25-OH-D3 только при наличии необыч­но высоких концентраций витамина D3. 25-Гидроксилирование обнаружено также в кишечнцке и почках птиц, но с точки зре­ния количества эти органы играют, вероятно, лишь незначитель­ную роль в общей продукции 25-OH-D3.

В печени может происходить и дальнейший метаболизм 25-OH-D3 с образованием более полярных и биологически неак­тивных продуктов, что наблюдается в основном в условиях ускоренного микросомного гидроксилирования, вызванного раз­личными фармакологическими средствами.

Синтез 1,25-(OH)2D3и 24,25-(ОН)2D3в почках

Дальнейший метаболизм 25-OH-D3 происходит в основном в почках. Главными метаболитами являются l,25-(OH)2-D3 и 24,25-(ОН)2-D3. l,25-(OH)2-D3 синтезируется 25-OН-D3-1α-гидроксилазой — митохондриальной монооксигеназой со смешанной функцией, которая у млекопитающих присутствует, по-видимо­му, лишь в проксимальных канальцах, но у птиц она содер­жится не только в проксимальных канальцах, но и в клубочках. Этот фермент состбит из нескольких компонентов, включая железосеросодержащий белок, связанный с НАД, флавопротеин и цитохром Р-450, специфичный для 25-OH-D3. Специфич­ный компонент системы (цитохром Р-450) вводит один атом кислорода в положение 1α. Вся эта ферментная система изуче­на почти исключительно в почках цыпленка или в первичной культуре клеток его почек. Ее Км колеблется от 1,2 до 3,6х10 -7 М, а Vмакс составляет примерно 5,5 моль/мг мито­хондриального белка в 1 мин. В почках млекопитающих этот фермент труднее поддается исследованию, вероятно, из-за присутствия больших количеств 25-ОН-D3-связывающих белков, что ограничивает доступность субстрата. Недавние исследования обнаружили, однако, 1α-гидрокси,лазную активность в ми­тохондриях, выделенных из коркового вещества почек крыс с D-авитаминозом. Км фермента (8,9х10 -7 М) несколько выше, чем для митохондриального фермента у цыплят, хотя пос­ледние данные нуждаются в подтверждении. Фермент найден также в почечных срезах крыс, в изолированных клетках крысиной почки и в культуре клеток почки мыши. В большинстве этих исследований ферментативную активность определяли по превращению меченого 25-OH-D3 в радиоактивные продукты, мигрирующие при высокоэффективной жидкост­ной хроматографии вместе с аутентичным l,25-(OH)2-D3. Хими­чески этот продукт был идентифицирован как 1,25-(ОН)2-D3 только в гомогенах почки крысы.

В почке из 25-OH-D3 образуется и 24,25-(ОН)2-D3. Это происходит под действием фермента, который также является мито­хондриальной оксидазой со смешанной функцией и локализует­ся у крыс, по-видимому, в проксимальных извитых и прямых почечных канальцах. Км 24-гидроксилазы митохондриальных препаратов почки цыпленка составляет примерно 1х10 -6 М, а почки крысы — около 3,8х10 -7 М.

Внепочечный синтез l,25-(OH)2D3 и 24,25-(OH)2D3

После того как было показано, что в организме беременных и нефрэктомированных крыс с авитаминозом D меченый 25-OH-D3 может превращаться в более полярный метаболит, мигрирующий вместе с l,25-(OH)2-D3, удалось выяснить роль плаценты в метаболизме 25-OH-D3 с образованием продукта, химически идентифицированного как l,25-(OH)2-D3. Недавно были также опубликованы данные, показывающие, что клетки крыши черепа плода крысы в культуре способны синте­зировать вещество, мигрирующее вместе с l,25-(OH)2-D3. В противовес всем этим наблюдениям многократно сообщалось об отсутствии определимых количеств l,25-(OH)2-D3 в сыворот­ке крови лишенных почек людей, жизнь которых поддержива­лась диализом, а также у нефрэктомированных неберемен­ных животных. Совсем недавно, однако, удалось определить низкую концентрацию l,25-(OH)2-D3 в сыворотке крови лишен­ных почек больных. Больше того, введение таким больным витамина D2 приводило к повышению уровня l,25-(OH)2-D3 в сыворотке (но не до нормы). Хотя эти наблюдения свиде­тельствуют о том, что у человека в условиях доступности боль­шие количеств предшественника (25-OH-D) немного l,25-(OH)2-D может образовываться и вне почек, однако в норме уровень l,25-(OH)2-D в сыворотке не зависит от концентрации 25-OH-D. Тем не менее современные исследования дают основания считать, что в определенных условиях (у детей и лиц с авитами­нозом D, подвергающихся ультрафиолетовому облучению) уро­вень l,25-(OH)2-D все же может зависеть от концентрации предшественника (25-OH-D).

Почки, по-видимому, служат основным органом, где у чело­века синтезируется 24,25-(ОН)2-D, так как его уровень в сы­воротке крови снижается по мере прогрессирования почечной недостаточности, становясь очень низким и часто неопредели­мым у больных, лишенных почек. Однако на животных получены данные, показывающие, что и другие ткани, в том ,числе кишечник и хрящ, могут образовывать из 3 H-25-OH-D3 меченый метаболит, обладающий теми же хрома­тографическими свойствами и чувствительностью к разрушаю­щему действию перйодата, что и подлинный 24,25-(ОН)2-D3. Кроме того, 24,25-(ОН)2-D3 химически идентифицирован в плаз­ме нефрэктомированных свиней, получавших большие дозы ви­тамина D. Подобно этому, уровень 24,25-(ОН)2-D в сыво­ротке крови лишенных почек людей возрастает, когда они полу­чают большие дозы витамина D2. Таким образом, при чрез­мерно высокой концентрации 25-OH-D в сыворотке крови у че­ловека 24,25-(ОН)2-D может синтезироваться и вне почек.

Энтеропеченочная циркуляция метаболитов витамина D

Витамин D и его метаболиты экскретируются в основном с калом. Витамин D3, 25-OH-D3 и l,25-(OH)2-D3 в печени под­вергаются конъюгированию и секретируются в желчь. Имеются также данные о том, что эти метаболиты могут реабсорбироваться и реутилизироваться, формируя таким образом «запас­ной» механизм метаболизма витамина D.

Другие метаболиты витамина D

25-OH-D3 может превращаться не только в l,25-(OH)2-D3 и 24,25-(ОН)2-D3, но и в другие соединения. К ним относятся 25,26-(ОН)2-D3 и 25-ОН-D3-26,23-лактон. Эти метаболиты, как и 24,25-(ОН)2-D3, могут подвергаться 1-гидроксилированию, об­разуя 1,24,25-(ОН)3-D3, 1,25,26-(OH)3-D3 и l,25-(OH)2-D3-26,23-лактон. Кроме того, может подвергнуться окислению боковая цепь 1,25-(OH)2-D3, в результате чего образуется 23-кислота (кальцитроевая кислота); при окислении же боковой цепи 25-OH-D3 образуется 24-кислота (холакальциевая кислота). Позднее были выделены 23,25-(ОН)2-D3, 25-OH-24-оксо-D3, 25-ОН-транс-D3 и 19-нор-10-оксо-25-OH-D3. Эти метаболиты в свою очередь могут подвергаться дальнейшей трансформации. Современные данные свидетельствует о том, что биологические эффекты этих метаболитов не соответствуют таковым 1,25-(OH)2-D3, так что их физиологическая роль остается неясной. Отдельные из них (если не все) наверняка представляют собой продукты деградации.

БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ ВИТАМИНА D

Транспортные процессы в кишечнике

Всасывание кальция в кишечнике осуществляется за счет активного транспорта против электрохимического градиента, а также (когда содержание кальция в пище и, следовательно, его концентрация в просвете кишки чрезмерно возрастают) за счет пассивного перемещения. У животных и человека с авитамино­зом D всасывание кальция в кишечнике в условиях нормально­го его поступления с пищей снижается. Введение витамина D3 животным с авитаминозом D восстанавливает нормальную ско­рость всасывания кальция в кишечнике не ранее чем через 16 ч. Существование этого лаг-периода позволило предположить, а затем и доказать, что витамин D должен подвергнуться ка­ким-то превращениям, а в кишечнике должны произойти некото­рые изменения, прежде чем нормализуется транспорт кальция. Уже давно было показано, что 25-OH-D3 нормализует транспорт кальция быстрее, чем это делает витамин D3. Затем был иден­тифицирован l,25-(OH)2-D3 и установлено, что он является бо­лее эффективным и быстродействующим метаболитом витами­на D в отношении стимуляции всасывания кальция в кишечнике. В период максимальной стимуляции активного транспорта, вызванной введением меченого витамина D3 животным с авита­минозом D, в кишечнике удается определить только меченый 1,25-(OH)2-D3. Данное соединение связывается, по-видимо­му, со специфическим рецепторным белком цитозоля клеток ки­шечника, который переносит стероид в ядро, где он комплексируется с хроматином и индуцирует синтез белка, подобно тому, как это происходит в отношении других стероидных гормонов. В ответ на действие 1,25-(ОН)23 образуется специфическая мРНК, кодирующая синтез специфического кальцийсвязывающего белка (СаСБ). Содержание последнего в кишечнике коррелирует с транспортом кальция в этом органе, увеличи­ваясь, когда животным с авитаминозом D вводят витамин D3 или по мере возрастания активного транспорта кальция при ог­раничении кальция в диете, и снижаясь по мере замедления всасывания кальция в кишечнике, происходящего с возрастом. Эти данные позволяют считать, что СаСБ принимает уча­стие в активном транспорте кальция в кишечнике в качестве переносчика. С другой стороны, СаСБ появляется в кишечнике несколько позднее, чем возникает стимуляция транспорта каль­ция, вызванная введением 1,25-(ОН)2-D3 животным с авитами­нозом D. Кроме того, увеличение всасывания кальция в кишеч­нике в таких условиях протекает, по-видимому, двухфазно: после начальной транзиторной стимуляции процесса регистрируется повторное и длительное его ускорение. Таким образом, СаСБ может не столько «запускать» транспорт кальция, сколь­ко поддерживать его на повышенном уровне. Предварительное введение животным с авитаминозом D ингибиторов синтеза бел­ка предотвращает действие 1,25-(ОН)23 на синтез СаСБ в кишечнике, но не блокирует восстановления всасывания кальция. Позднее было выдвинуто предположение, что l,25-(OH)2-D «запускает» транспорт кальция за счет изменения фосфолипидного состава обращенной в просвет кишечника мембраны кле­ток. Витамин D может ускорять и пассивное перемещение Са в кишечнике, так как поступление Са при введении витами­на D животным с D-авитаминозом возрастает и в том случае; когда кишечник исследуется при низкой температуре или в анаэробных условиях.

У человека в условиях насыщения витамином D всасывание кальция в кишечнике, определяемое либо как истин­ное (с помощью изотопных методик), либо как результирующее (с помощью балансовых экспериментов), прямо коррелирует с концентрациями l,25-(OH)2-D в интервале от нуля до верхней границы нормы. Эта зависимость необычайно чувствитель­на: у лиц, находящихся на нормальной диете, обеспечивающей поступление 10—25 ммоль кальция в день, при повышении кон­центрации l,25-(OH)2-D в сыворотке крови на 1 пМ всасывание кальция в кишечнике увеличивается на 0,23%, или, на 0,06 ммоль. Таким образом, при нормальном содержании каль­ция в диете всасывание его в кишечнике определяется доступ­ностью l,25-(OH)2-D.

При дефиците витамина D снижается и транспорт фосфата в кишечнике. Введение в таких условиях витамина D или 1,25-(OH)2-D3 усиливает кишечное всасывание фосфата. Этот эффект обусловливается, по-видимому, присутствием имен­но l,25(OH)2-D3, так как 25-ОН-D3 не стимулирует транспорта фосфата при введении его нефрэктомированным животным с авитаминозом D. Наибольшая стимуляция всасывания фосфата после введения l,25-(OH)2-D наблюдается в тощей кишке; затем — в двенадцатиперстной и подвздошной. Но хотя по этому вопросу еще имеются противоречия, по-видимому, для проявления стимуляции всасывания фосфата витамином D не­обходим кальций. Введение l,25-(OH)2-D3 может усиливать ки­шечное всасывание фосфата и у человека. Однако у лишенных почек и находящихся на гемодиализе больных, у которых кон­центрацию l,25-(OH)2-D в сыворотке крови определить невоз­можно, всасывается значительная доля фосфата, содержащегося в пище. Это указывает на независимость кишечного всасы­вания фосфата от l,25-(OH)2-D3. У людей в условиях насыщения витамином D всасывание фосфата в кишечнике, выраженное в процентах от его поступления с пищей (при нормальных колебаниях последнего), на 1 пМ прироста концентрации l,25-(OH)2-D увеличивается на 0,05%.

Читайте также:  Джунгли витамины для детей с года

Хотя наиболее эффективным и быстродействующим в отно­шении кишечного всасывания кальция и фосфата метаболитом витамина D является именно 1,25-(ОН)2-D3, в фармакологиче­ских дозах определенной активностью могут обладать и другие метаболиты этого витамина. В настоящее время, однако, считают, что l,25-(OH)2-D — единственная физиологически значи­мая форма витамина D для процессов кишечного всасывания этих минеральных веществ.

Поражение костей (рахит в период роста и остеомаляции у взрослых) — патогномоничный признак D-авитаминоза. Костная патология включает нарушение кальцификации и рассасывание эпифизарных хрящей, а также утрату способности эпифизар­ного новообразования кости наряду с метафизарным разраста­нием неминерализованного остеоидного или костного матрикса. При лечении животных и людей с D-авитаминозом соответст­вующим витамином наблюдается нормализация эпифизирной кальцификации хряща и происходит нормальный рост кости в сочетании с минерализацией остеоида, что приводит к исчезновению костной патологии. Что касается механизмов перечислен­ных влияний витамина D на кость, то здесь пока сохраняются противоречивые мнения. С одной стороны, предполагается, что нормальная минерализация костей обусловливается повыше­нием концентраций кальция и фосфата в сыворотке и внеклеточ­ной жидкости, которое в свою очередь является следствием сти­мулирующего влияния витамина D на всасывание кальция и фосфата в кишечнике. С другой стороны, витамин D или один из его метаболитов мог бы непосредственно действовать на хрящевую и костную ткани, нормализуя их минерализацию. Хо­тя известно, что передозировка витамина D вызывает деминера­лизацию скелета, a l,25-(OH)2-D in vitro усиливает резорбцию кости, имеются данные, свидетельствующие о способности витамина D стимулировать минерализацию кости. Например, у больных с остеомаляцией, обусловленной хронической почечной недостаточностью, искусственное повышение уровней кальция и фосфата в сыворотке крови не нормализует минерализации костей, тогда как при введении витамина D такая нормализа­ция происходит. Механизм прямого влияния витамина D на кость остается неизвестным. Однако в костных клетках присут­ствуют специфические рецепторы l,25-(OH)2-D, которые теоре­тически могли бы опосредовать такой эффект.

Кроме того, существуют противоречия относительно природы метаболита витамина D, необходимого для нормальной минера­лизации костей. В некоторых клинических исследованиях было показано, что при введении одного l,25(OH)2-D3 больным с авитаминозом D исчезают только дефекты минерализации, но избыточные количества остеоида сохраняются. Для полной ликвидации костной патологии в этих исследованиях вводили витамин D3, или 25-OH-D3, или сочетание l,25-(OH)2-D3 с 24,25-(ОН)2-D3. Отсюда следует, что для нормального образова­ния кости мог бы требоваться 24,25-(ОН)2-D. Позднее, однако, появились сообщения о том, что введение одного l,25-(OH)2-D3 может приводить к полному излечению остеомаляции, несмотря на сохранение низких уровней 25-ОH-D и 24,25-(ОН)2-D в сы­воротке крови. Больше того, недавние исследования по экс­периментальному рахиту у животных показали, что ликвидации костной патологии можно добиться введением аналога витамина D—24,24-дифтор-25-ОН-D3, который не подвергается гидроксилированию в 24-м положении, но способен гидроксилироваться в 1-м положении. Приведенные данные свидетельствуют против роли недостаточности 24,25-(OH)2-D3 в патогенезе рахи­та и остеомаляции. Для окончательного решения этого вопроса необходимы, очевидно, дальнейшие исследования.

В почках идентифицированы специфические цитозольные ре­цепторы l,25-(OH)2-D3, обладающие высоким сродством к это­му соединению. Однако влияние витамина D и его метаболитов на почки остается областью противоречий. При исследовании почечного клиренса уже давно было показано, что 25-OH-D3 и 1,25-(OH)2-D3 усиливают канальцевую реабсорбцию кальция и фосфата у собак, что должно было бы способствовать сохране­нию запасов этих веществ в организме. Однако последую­щие исследования по клиренсу у тиреопаратйреоидэктомированных крыс, получавших физиологические дозы l,25-(OH)2-D (что восстанавливало всасывание кальция в кишечнике до нормы), не выявили изменений экскреции кальция в расчете на единицу скорости клубочковой фильтрации по мере прогрессивного уве­личения концентрации кальция в сыворотке до нормы и выше. В отличие от этого паратиреоидный гормон (ПТГ), как и ожидалось, снижал экскрецию кальция с мочой. Такие наблю­дения должны были бы указывать на то, что l,25-(OH)2-D не оказывает видимого влияния на транспорт кальция в почечных канальцах. Однако дальнейшее изучение данного вопроса от­четливо продемонстрировало значение l,25-(OH)2-D для транс­порта кальция в других тканях, где присутствуют l,25-(OH)2-D и СаСБ, а также наличие рецепторов l,25-(OH)2-D и СаСБ в почках. В аналогичных экспериментах с определением динамики фосфата в почках тиреопаратиреоидэктомированных крыс, получавших 1,25-(ОН)2-D3, было показано торможение канальцевой реабсорбции фосфата. Этот эффект, по-види­мому, опосредуется усилением секреции фосфата более прокси­мальными сегментами канальца и, возможно, сегментом, рас­полагающимся вне дистальной извитой его части. Больше того, введение l,25-(OH)2-D больным с гипопаратиреозом со­провождается снижением уровня фосфата в сыворотке крови. Приведенные данные в совокупности указывают, таким об­разом, на способность витамина D увеличивать экскрецию фос­фата с мочой, причем этот эффект не связан с хорошо извест­ным фосфатурическим действием ПТГ.

У человека повышение концентрации l,25-(OH)2-D в сыво­ротке сопровождается возрастанием экскреции кальция с мочой. В условиях нормального потребления кальция этот эффект является, по-видимому, следствием усиления его кишечного вса­сывания и повышения концентрации в сыворотке крови, что приводит к увеличению клубочковой фильтрации кальция и (в результате снижения уровня иммунореактивного ПТГ в сыво­ротке) к торможению канальцевой реабсорбции. При низ­ком содержании кальция в диете повышение уровня 1,25-(ОН)2-D в сыворотке крови также сопровождается усилением экскреции кальция с мочой вследствие более эффективного его всасывания в кишечнике и резорбции костной ткани, но кальцийурическая реакция выражена все же слабее, чем в условиях нормаль­ного потребления кальция.

Прочие ткани

Обладаю­щие высоким сродством к l,25-(OH)2-D рецепторы и (или) за­висимый от витамина D СаСБ обнаружены не только в кишеч­нике, костях и почках, но и в молочных железах, коже, околощитовидных железах, гипофизе и поджелудочной железе. Кроме того, рецепторы были найдены в культивируемых фибробластах человека и некоторых линиях злокачественных клеток.

Рецепторы l,25-(OH)2-D3 имеют константу седиментации, равную примерно 3,3S, и обладают высоким сродством к гормону: Кд около 10 -10 М. Присутствие рецепторов 1,25-(ОН)2-D и СаСБ в молочных железах согласуется, очевидно, с наличием транспорта Са в молоко. Что касается других тканей, то они не являются общепризнанными мишенями витамина D и его метаболитов, так что роль последних в регуляции их функции оста­ется неизвестной. Можно было бы предположить, что в коже 1,25-(OH)2-D регулирует продукцию витамина D. 1,25-(ОН)2-D мог бы также облегчить поступление кальция в околощитовидные железы, усиливая тем самым его известное ингибиторное действие на секрецию ПТГ. Подобно этому, облегчая проникно­вение кальция в β-клетки поджелудочной железы, l,25-(OH)2-D мог бы повышать секрецию инсулина.

Возможная роль 24,25-(OH)2D

После открытия химического синтеза 24,25-(ОН)2-D3 возник интерес к его возможной биологической роли, поскольку он яв­ляется основным метаболитом витамина D не только у живот­ных, но и у человека. Первые опыты на животных с D-авитаминозом показали, что биологическая активность 24,25-(ОН)2-D3 сравнима с таковой его предшественника — 25-OH-D3. Однако эта активность, по-видимому, связана в основном с lα-гидроксилированием метаболита и образованием 1,24,25-(ОН)2-D3. Исследования, проведенные у здоровых лиц и лишенных почек больных, показали, что введение 24,25-(ОН)2-D могло бы стимулировать всасывание кальция в кишечнике, но в последующих наблюдениях этого подтвердить не уда­лось. Позднее было высказано предположение, что 24,25-(ОН)2-D3 необходим для нормального вылупления цыплят из яиц и участвует в процессе формирования костей. Эту гипотезу подтверждают данные о том, что 24,25-(OH)2-D увели­чивает синтез протеогликанов в культуре хондроцитов из зон роста и что ядра этих клеток содержат специфические связы­вающие места для 24,25-(ОН)2-D. Однако, как отмечалось выше, введение l,25-(OH)2-D людям с D-авитаминозом мо­жет приводить к полному излечению остеомаляции, как это наблюдается и при костной патологии у крыс с дефицитом ви­тамина D.

Сообщалось также, что 24,25-(OH)2-D тормозит секрецию ПТГ у собак, а также снижает массу гипертрофированных околощитовидных желез у цыплят с дефицитом витамина D. Кроме того, имеются сообщения о присутствии специфиче­ских рецепторов 24,25-(OH)2-D в околощитовидных железах цыплят с рахитом. Однако скетчардовский анализ не про­водился, поэтому указанные рецепторы еще не охарактеризованы с достаточной определенностью. Таким образом, хотя важ­ная роль 24,25-(ОН)2-D в гомеостазе кальция вполне возможна эта гипотеза остается умозрительной и требует дополнительных подтверждений.

РЕГУЛЯЦИЯ МЕТАБОЛИЗМА ВИТАМИНА D

Концентрации витамина D и его метаболитов в плазме отражают суммарное количество ме­таболитов витаминов D3 и D2, поскольку в опытах по связыва­нию, на которых основаны приведенные данные, обычно не де­лалось различия между этими формами. Основной формой ви­тамина D, присутствующей в плазме, является 25-OH-D; его средняя концентрация составляет около 60 нМ, или 25 нг/мл. Концентрации самого витамина D и 24,25-(ОН)2-D примерно в 10 раз ниже. Концентрация l,25-(OH)2-D приблизительно в 1000 раз ниже, чем 25-OH-D. Период полужизни витамина D в плазме — около 1 дня, так как он быстро превращается в 25-OH-D (что установлено для витамина D3). Период полужиз­ни в плазме 25-OH-D, судя по результатам определения скоро­сти исчезновения введенного 3 Н-25-ОН-D3 и наклону кривой, спада уровня 25-OH-D3 после введения его фармакологических; доз, составляет приблизительно 3 нед. Поэтому содержание в плазме 25-OH-D позволяет, по-видимому, точнее оценивать за­пасы витамина D в организме. Период полужизни в плазме 1,25-(ОН)2-D3 очень мал. Введенный в кровь 3 H-l,25-(OH)2-D3 исчезает из плазмы с полупериодом менее 10 мин, хотя полупериод исчезновения из плазмы l,25-(OH)2-D после его приема как у здоровых взрослых людей, так и у лишенных почек боль­ных составляет примерно 6 ч (R. W. Gray, J. Lemann, неопубли­кованные данные). Поэтому уровень l,25-(OH)2-D в плазме прежде всего отражает продукцию этого стероидного гормона.

Синтез 25-OH-D3 в печени, по-видимому, не является объектом жесткого контроля. Концентрация данного вещества в сыворот­ке, служащая наилучшим показателем запасов витамина D в ор­ганизме, зависит главным образом от потребления этого вита­мина и синтеза его в коже под действием солнечного света. В Англии, где в молоко не добавляют витамин D2, концентра­ция в сыворотке 25-OH-D у здоровых лиц колеблется примерно от 30 нМ в конце зимы до 60 нМ в конце лета, что связано с интенсивностью солнечного облучения. Аналогичные, хотя и слабее выраженные сезонные колебания уровня 25-OH-D в сы­воротке крови отмечены в США, где его минимальная кон­центрация зимой выше, вероятно, вследствие повсеместного добавления витамина D2 в молоко и что важнее, более высокого уровня 25-OH-D3 в летнее время. Последнее может отчасти объясняться сохранением превитамина D3 в коже, так как ДСГ обладает гораздо большим сродством к витамину D3, чем к превитамину D3. Искусственное облучение 600 см 2 кожи в тече­ние примерно 15 мин за 2 нед. увеличивает содержание 25-OH-D в сыворотке на 4—11 нМ. Расчеты показывают, что каж­дый квадратный сантиметр облученной кожи мог бы продуци­ровать до 0,024 нмоль 25-OH-D3. Отсюда следует, что солнечное облучение даже ограниченных участков кожи могло бы быть наиболее важной детерминантой содержания 25-OH-D в сыво­ротке и общих запасов витамина D в организме. Последние, та­ким образом, зависят в основном от географической широты проживания, сезона года и образа жизни.

Метаболизм и экскреция 25-OH-D3 исследованы у здоровых взрослых людей после инъекций 3 H-25-OH-D3. За 1 нед. с мочой выделяется примерно 10% вещества (почти исключительно в виде водорастворимых конъюгатов его метаболитов); еще 15% экскретируется с калом также в основном в виде конъюгатов и метаболитов. Предполагают, что 25-OH-D3 метаболизируется и путем окисления боковой цепи.

Поскольку почечный 25-ОН-Бз-1а-гидроксилазный комплекс локализован в митохондриях, регуляция синтеза 1,25-(ОН)2-Оз этой ферментной системой предполагает существование последо­вательности сигналов. Гормональные или нервные регуляторные стимулы должны были бы действовать на клеточную мембрану, генерируя «вторые мессенджеры», такие как циклический АМФ, или изменяя внутриклеточную концентрацию ионов или субстра­тов и кофакторов, необходимых для продукции энергии в мито­хондриях.

Дефицит витамина D у человека, естественно, сопровожда­ется резким снижением сывороточных концентраций 25-OH-D, 24,25-(ОН)2-D и l,25-(OH)2-D. У таких больных отмечаются также гипокальциемия разной степени выраженности, вторич­ный гиперпаратиреоз и гипофосфатемия. При назначении им физиологических доз витамина D концентрация l,25-(OH)2-D в сыворотке быстро возрастает, превышая нормальный уровень, что свидетельствует о стимуляции почечной 25-OH-D3-lα-гидроксилазы и субстратной регуляции продукции гормона. По мере того как у больных с исходным дефицитом витамина D его запасы в организме восстанавливаются, уровень l,25-(OH)2-D снижается до нормы. Подобно этому, у животных с D-авитаминозом синтез 1,25-(OH)2-D3 оказывается повышенным по сравнению с таковым у животных с достаточными запасами ви­тамина D в организме, что регистрируется по превращению 3 H-25-OH-D3 в 3 H-l,25-(OH)2-D3 как in vivo, так и на изоли­рованных почечных канальцах. Больше того, введение ви­тамина D или l,25-(OH)2-D3 животным с D-авитаминозом быст­ро снижает активность 1α-гидроксилазы in vivo и in vitro. В ме­ханизме подавления активности 25-ОН-D-1α-гидроксилазы гор­моном (l,25-(OH)2-D) может играть роль ингибирование транс­крипции генов.

В ранних исследованиях на крысах было показано, что умень­шение содержания кальция в диете увеличивает превращение 3 H-25-OH-D3 в 3 H-l,25-(OH)2-D3. Затем было установлено, что дефицит кальция повышает и концентрацию l,25-(OH)2-D в плазме, причем этот эффект практически исчезал у паратиреоидэктомированных животных. Искусственная гипокальцие­мия или сокращение количества кальция в пище увеличивает содержание в плазме l,25-(OH)2-D и у человека, что связано с возрастанием концентрации паратиреоидного гормона в сыво­ротке. Кроме того, уровень l,25-(OH)2-D в плазме часто оказы­вается повышенным у больных с первичным гипертиреозом; он также возрастает после инфузий ПТГ. Все эти наблюдения свидетельствуют о том, что дефицит кальция либо непосредственно, либо через стимуляцию секреции ПТГ увели­чивает синтез l,25-(OH)2-D в почках. При ограничении кальция в диете уровень l,25-(OH)2-D в сыворотке несколько повышает­ся даже у паратиреоидэктомированных животных, но сни­женная концентрация кальция в среде не стимулирует активно­сти фермента, образующего l,25-(OH)2-D, в культуре почечных клеток цыпленка. В то же время добавление ПТГ к среде куль­тивируемых почечных клеток усиливает синтез l,25-(OH)2-D, что доказывает непосредственность действия паратиреоидного гормона. Повышение или снижение содержания l,25-(OH)2-D в сыворотке крови человека в усло­виях дефицита или избытка кальция тесно коррелирует с не­большими изменениями уровня ПТГ в сыворотке. Эти резуль­таты указывают на важную роль системы Са — ПТГ в регуля­ции содержания l,25-(OH)2-D в плазме человека.

Ограничение фосфатов в диете усиливает у животных пре­вращение 3 Н-25-ОН-D3 в 3 H-l,25-(OH)2-D3. Дефицит фосфа­та повышает и концентрацию l,25-(OH)2-D в сыворотке крови животных и человека, причем данный эффект не зависит от функции околощитовидных желез. Механизм такого эффек­та неизвестен. Предполагают, что он опосредуется уменьше­нием содержания неорганического фосфора в почечных клетках P0J но снижение концентрации фосфата в среде не стимулиро­вало синтез l,25-(OH)2-D культурой почечных клеток цыплен­ка. У крыс повышение содержания l,25-(OH)2-D в плазме в от­вет на ограничение фосфора в диете (что отражает почечный синтез гормона) блокируется гипофизэктомией, несмот­ря на сохранение гипофосфатемии. Не исключено, таким обра­зом, гормональное опосредование стимуляции почечного синтеза 1,25-(OH)2-D при дефиците фосфора.

Другие факторы

Изучался и ряд других возможных факторов регуляции по­чечного синтеза l,25-(OH)2-D. У молодых растущих животных, у детей и подростков уровень l,25-(OH)2-D в плазме выше, чем после наступления половой зрелости. Содержание 1,25-(OH)2-D в плазме уменьшается и при старении. Пред­полагалось поэтому, что такие эффекты могут быть связаны с гормоном роста. Гипофизэктомия снижает уровень l,25-(OH)2-D в плазме крыс, причем это влияние нивелируется гормоном рос­та (СТГ). Больше того, введение СТГ инактным крысам увеличивает содержание l,25-(OH)2-D в плазме. С другой стороны, введение СТГ детям с недостаточностью гормона рос­та не повышает сывороточного уровня l,25-(OH)2-D, несмотря на стимуляцию роста; содержание l,25-(OH)2-D не всегда повышено и при активной акромегалии. Таким образом, роль СТГ в качестве стимул# синтеза l,25-(OH)2-D у человека остается невыясненной. С тем же основанием можно предпола­гать и участие других факторов, приводящих усиление всасыва­ния кальция в кишечнике под действием l,25-(OH)2-D в соот­ветствие с потребностями растущего скелета, для чего необхо­димы дальнейшие исследования.

К другим физиологическим состояниям, при которых возни­кает потребность организма в ускоренном всасывании кальция, относятся беременность, образование скорлупы яиц у птиц и лактация. У женщин уровень l,25-(OH)2-D в плазме по мере развития беременности повышается. Как уже отмечалось, 1,25-(OH)2-D может продуцироваться плацентой, что, веро­ятно, в какой-то степени и определяет такое повышение. Сопровождается ли беременность дополнительной независимой стимуляцией почечного синтеза l,25-(OH)2-D — не известно. Следует отметить, однако, что у птиц эстрогены стимулируют почечный синтез l,25-(OH)2-D, а, как известно, концентра­ция эстрогенов в сыворотке крови по мере развития беременно­сти возрастает. Повышение уровня l,25-(OH)2-D в плазме при беременности отчасти может быть связано с увеличением концентрации ДСГ в сыворотке, наблюдающимся в этот период. Во время лактации содержание 1,25-(ОH)2-D в сыворотке также повышено. В отношении механизма этого явления имеются противоречия. При кормлении грудью возрастает уро­вень пролактина, а на птицах показано, что пролактин стимули­рует синтез l,25-(OH)2-D в почках. Однако у женщин с гиперпролактинемическим синдромом галактореи — аменореи уровень l,25-(OH)2-D в плазме не повышен.

Читайте также:  Джунгли витамины для детей производитель

Хорошо известно, что метаболический ацидоз сопровождается гиперкальциурией, что требует оценки метаболизма витамина D при ацидозе. В условиях метаболического ацидоза синтез 1,25-(OH)2-D у животных с D-авитаминозом тормозится, но у человека в отсутствие дефицита витамина D легкий аци­доз, хотя он и сопровождается повышенной экскрецией кальция с мочой, не вызывает изменений уровня l,25-(OH)2-D в сыво­ротке. Кроме того, у человека метаболический ацидоз не вызывает видимых изменений всасывания кальция в кишечнике. Таким образом, в патогенезе характерной для метаболи­ческого ацидоза кальциурии у человека в условиях отсутствия дефицита витамина D изменения метаболизма последнего, по-видимому, не играют никакой роли.

У здорЬвого взрослого человека 3 H-l,25-(OH)2-D уже в тече­ние 4—6 ч превращается в более полярные соединения. Около 15—20% его выводится за 1 нед с мочой, главным обра­зом в виде конъюгатов этих более полярных метаболитов, тогда как с калом за то же время выводится примерно 50% (также в виде более полярных метаболитов и конъюгатов). Осталь­ная часть распадается, вероятно, при окислении боковой цепи. Можно полагать; что у здорового человека именно синтез 1,25-(OH)2-D, а не его быстрый метаболизм, является основной детерминантой концентрации гормона в плазме.

Регуляция уровня 24,25-(OH)2D

Содержание 24,25-(ОН)2-D в плазме при D-авитаминозе у человека, естественно, снижается до трудно определяемых значений; это вещество появляется в сыворотке только после восстановления в организме запасов его предшественни­ков — 25-OH-D. В отсутствие дефицита витамина D сывороточ­ная концентрация 24,25-(OH)2-D у человека прямо коррелирует с концентрацией предшественника (25-OH-D). Таким обра­зом, синтез 24,25-(OH)2-D зависит, по-видимому, в основном от доступности 25-OH-D. Нет данных, которые указывали бы на регуляцию синтеза 24,25-(OH)2-D (при отсутствии дефицита ви­тамина D) кальцием, фосфором или ПТГ. Как отмечалось выше, вопрос о том, является ли 24,25-(ОН)2-D просто начальным продуктом распада витамина D или он обладает физиологиче­ской гормональной активностью, до сих пор не решен.

ЗАБОЛЕВАНИЯ, СВЯЗАННЫЕ С ВИТАМИНОМ D

Выяснение метаболизма витамина D и процессов его физио­логической регуляции позволяет последовательно проанализиро­вать результаты нарушения продукции и действия этого витами­на, а также результаты избыточного его потребления или акти­вации отдельных этапов его метаболизма.

Недостаточность витамина D: рахит и остеомаляция

Патогномоничными признаками рахита и остеомаляции яв­ляются деформация скелета у детей, боли в костях, переломы, и слабость проксимальных мышц. Рахит характеризуется нару­шением созревания и кальцификации хрящей и костей, а остео­маляция, возникающая после завершения роста скелета, — на­рушением минерализации костей. В табл. 13 перечислены основ­ные нарушения метаболизма витамина D, приводящие к era недостаточности и, следовательно, к патологии минерального обмена.

Так как синтез витамина D в коже осуществляется нефер­ментативным путем, какие-либо внутренние дефекты этого про­цесса неизвестны. Недостаточный кожный синтез витамина D обусловливается скорее всего недостатком солнечного облучения в силу различных обстоятельств. В соответствии с этим приоб­ретенная недостаточность витамина D наблюдалась при отсут­ствии солнечного облучения, особенно среди пожилых лиц или хронически больных, не выходящих из дома или больничной палаты. В США дефицит витамина D встречается редко, что связано, вероятно, с достаточным пребыванием на солнце. Не исключено также, что потребность в витамине D частично покрывается поливитаминными добавками, широко распростра­ненными в практике кормления детей, и, кроме того, добавле­нием витамина D к молоку (обычно около 400 ME, или 10 мкг витамина D2 на 1 л). В Англии в отличие от США рахит у де­тей и подростков, принадлежащих к популяции иммигрантов из азиатских стран, остается важной проблемой. Механизмы воз­никновения D-авитаминоза в этой группе населения (они иссле­дованы недостаточно) могут быть связаны с ограниченностью» солнечного облучения. Предполагается, кроме того, роль по­требления с пищей больших количеств зерновых продуктов, со­держащих фитат, что могло бы увеличивать потерю витамина D с калом и затруднять всасывание кальция в кишечнике.

Генетическая недостаточность печеночной 25-гидроксилазьв не описана. Однако в печени синтезируется не только 25-ОН-D3, но и ДСГ. Кроме того, для всасывания витамина D в кишечни­ке и поддержания энтеропеченочной циркуляции может иметь важное значение и нормальное желчеобразование. Поэто­му при тяжелых заболеваниях печени и желчных путей иногда возникает остеомаляция. Возможной причиной остеомаляции,, нередко встречающейся у больных, длительно получающих противосудорожные средства (фенобарбитал и фенитоин), считают ускорение распада витамина D и его метаболитов в печени за счет активации микросомной оксидазной системы. Не исклю­чено также, что эти лекарственные вещества способны непосред­ственно снижать всасывание кальция и фосфора в кишечнике. К остеомаляции могут приводить и заболевания кишечни­ка как вследствие разрыва энтеропеченочной циркуляции вита­мина D, так и в результате прямого нарушения всасывания кальция и фосфата.

Причиной рахита в некоторых редких случаях является ге­нетическая недостаточность синтеза l,25-(OH)2-D в почках. Су­ществование такого нарушения вначале было доказано чисто логическим путем: по отсутствию терапевтического эффекта фармакологических доз витамина D или 25-OH-D3 у тех детей с заболеванием костей, у которых полное выздоровление насту­пало при введении физиологических доз l,25-(OH)2-D3 (1,2-— 2,4 нмоль/сут, или 0,5—1,0 мкг/сут). Позднее у таких де­тей были отмечены нормальные уровни 25-OH-D и очень низкие концентрации l,25-(OH)2-D в сыворотке, что указывало на нарушение синтеза последнего. Этот дефект, наследуемый как аутосомно-рецессивный признак, получил название витамин D-зависимого рахита I типа.

Среди больных с нефротическим синдромом и нормальной скоростью клубочковой фильтрации симптомы костного заболе­вания встречаются редко, но гистологически выявляются приз­наки остеомаляции. Уровни 25-OH-D, l,25-(OH)2-D и 24,25-(OH)2-D в этих случаях снижены, что отражает возраста­ние потерь витамина D и его метаболитов с мочой, вероятно, в связи с аналогичными потерями ДСГ. Молекулярная мас­са и изоэлектрическая точка ДСГ сходны с таковыми альбумина, и это могло бы способствовать его фильтрации при увеличе­нии проницаемости клубочков. Хотя у больных нефрозом поте­ри 25-OH-D с мочой могут достигать 10 нмоль и более в сутки, они все же меньше, чем расчетная средняя величина нормаль­ного суточного кругооборота этого соединения у здоровых лю­дей. Поэтому потеря 25-OH-D с мочой может быть не единственной причиной его низкого уровня в сыворотке крови у таких больных. Больше того, нет каких-либо указаний на возникновение нефротического синдрома в ходе прогресси­рующего поражения клубочков, чрезвычайно часто сопровож­дающегося остеодистрофией при наступлении почечной недоста­точности. Можно полагать, таким образом, что потери с мочой метаболитов витамина D и ДСГ слабо влияют на сывороточную концентрацию несвязанного (свободного) 25-OH-D или 1,25-(OH)2-D, которая в основном и определяет биологические эф­фекты витамина D.

У некоторых больных с хронической почечной недостаточ­ностью, особенно у детей, рахит возникает на фоне как будто нормального потребления витамина D с пищей. В костных биоптатах взрослых больных с хроническим заболеванием почек и поражением костей, называемым почечной остеодистрофией, час­то обнаруживают не только изменения, обусловленные вторич­ным гиперпаратиреозом, но и различной степени остеомаляцию. Давно и хорошо известно также, что у больных с хрони­ческим заболеванием почек нарушено всасывание кальция в ки­шечнике. Почти 40 лет назад показано, что всасывание кальция в кишечнике у больных с почечной остеодистрофией и выра­женной почечной недостаточностью составляет в среднем лишь 1,8 ммоль/сут, или всего 7% от количества кальция, содер­жавшегося в диете, тогда как у здоровых людей, получавших ту же диету, обеспечивающую поступление примерно 27 ммоль кальция в сутки, всасывание достигает 8,1 ммоль/сут, или 28%. Чрезвычайно низкое всасывание кальция в кишечнике у боль­ных с почечной остеодистрофией не поддается терапии физио­логическими дозами витамина D, которые у больных с D-авитаминозом излечивают рахит. Как отмечалось выше, всасывание кальция в кишечнике зависит в основном от кон­центрации l,25-(OH)2-D в плазме, которая в свою очередь должна определяться способностью почек синтезировать этот гормон. Недавние наблюдения, проведенные среди взрослых больных с почечными заболеваниями, обнаружили нормальный или даже несколько повышенный уровень 1,25-(ОН)2-D в плаз­ме в период умеренного снижения скорости клубочковой филь­трации (примерно до 50 мм/мин); вероятно, это обусловлено развитием вторичного гиперпаратиреоза, характерного для ран­них стадий почечной недостаточности. Кроме того, у таких больных всасывание кальция в кишечнике оказывалось обычно в пределах нормы. С прогрессированием почечной недоста­точности содержание l,25-(OH)2-D в плазме снижается и достигает очень низкого или неопределимого уровня у лишенных почек больных, находящихся на диализе. При падении СКФ ниже 50 мл/мин наблюдалось и прогрессивное уменьше­ние всасывания кальция в кишечнике. Имеется сообщение о том, что у детей содержание l,25-(OH)2-D в плазме может снижаться уже на ранних стадиях почечной недостаточности. Хотя частое поражение канальцево-интерстициальной тка­ни у детей могло бы за счет избирательного повреждения ка­нальцев ограничивать синтез l,25-(OH)2-D оставшейся почечной тканью, все же снижение уровня этого соединения в плазме вы­является в таких случаях не всегда.

Пероральное введение l,25-(OH)2-D больным с хронически­ми заболеваниями почек усиливает всасывание кальция в ки­шечнике и прямо зависит от дозы. Примерно 1,6 нмоль, или 0,68 мкг 1,25-(ОН)2-D3 в сутки (т. к. количество, близкое к величине расчетной скорости кругооборота в норме, повышает всасывание кальция в кишечнике до уров­ня, наблюдаемого у здорового человека. Таким образом, почеч­ная недостаточность, по-видимому, не сопровождается значи­тельным нарушением реакции на 1,25-(ОН)2-D3. Длительное его введение при хронической почечной недостаточности может, сле­довательно, повышать концентрацию кальция в сыворотке, сни­жать сывороточный уровень ПТГ и щелочной фосфатазы и спо­собствовать ликвидации почечной остеомаляции. Однако у некоторых больных с почечной недостаточностью и изолиро­ванной остеомаляцией (без биохимических или гистологических признаков гиперпаратиреоза) введение 1,25-(OH)2-D быстро приводит к гиперкальциемии, но не излечивает заболевания кос­тей. Хотя эти данные позволяют предполагать дефицит не только l,25-(OH)2-D, но и какого-то другого метаболита вита­мина D у соответствующих больных, результаты недавних ис­следований указывают на то, что остеомаляция в таких случаях могла бы быть связанной с отравлением алюминием. По­ка не известно, могут ли введение 1,25-(ОН)2-D3 и, следователь­но, поддержание его нормальной концентрации в сыворотке на­ряду с коррекцией уровня фосфата в ней на ранних стадиях по­чечной недостаточности предупреждать развитие почечной остеодистрофии» по мере прогрессирования этой недостаточно­сти. Поскольку l,25-(OH)2-D усиливает всасывание кальция и фосфора в кишечнике, возникающее в результате этого повыше­ние их содержания в сыворотке могло бы вызвать кальцифика­цию мягких тканей и тем самым ускорять развитие почечной недостаточности.

Концентрация l,25-(OH)2-D в сыворотке снижена или неаде­кватно возрастает при некоторых расстройствах, сопровождаю­щихся нарушением регуляции синтеза этого соединения в поч­ках. Низкий уровень l,25-(OH)2-D в сыворотке отмечается у больных с послеоперационным или идиопатическим гипопаратиреозом. Введение таким больным экстракта околощитовидных желез нормализует содержание этого соединения в сы­воротке, что может объясняться как непосредственным дейст­вием ПТГ, так и сопутствующей фосфатурией и уменьшением концентрации фосфата в сыворотке. У больных с псевдогипопаратиреозом уровень l,25-(OH)2-D в сыворотке также снижен, но он не повышается после введения экстракта околощитовид­ных желез. Однако, введение дибутирил-цАМФ больным с псевдогипопаратиреозом I типа увеличивает сывороточную концентрацию l,25-(OH)2-D. Дибутирил-цАМФ действует, но всей вероятности, за счет «обхода» имеющегося у таких вольных дефекта белка, сопрягающего взаимодействие рецеп­тора ПТГ с аденилатциклазой, Снижение уровня 1,25-(OH)2-D в сыворотке крови у больных с гипопаратиреозом и псевдогипопаратиреозом, по-видимому, играет роль в патогенезе возникающей при этом гипокальциемии, так как его введение может в таких случаях поддерживать нормальную концентра­цию кальция в сыворотке.

Возможность нарушения метаболизма витамина D изучали также при состояниях, связанных с гипофосфатемией, сопровож­дающейся рахитом или остеомаляцией. У больных с Х-сцепленным гипофосфатемическим рахитом концентрация l,25-(OH)2-D в сыворотке может быть ниже, чем у здоровых людей соответствующего возраста, что свидетельствует о нарушении син­теза этого вещества в дополнение к известному основному де­фекту в транспорте фосфата. Существует экспериментальная модель Х-сцепленного гипофосфатемического рахита у мышей, у которых также обнаруживают несколько пониженную концентрацию l,25-(OH)2-D в плазме. Больше того, при огра­ничении фосфата в их пище эта концентрация резко снижа­ется, тогда как при ограничении Са она повышается. Эти данные свидетельствуют в пользу точки зрения, согласно кото­рой при Х-сцепленном гипофосфатемическом рахите нарушается регуляция активности 1α-гидроксилазы фосфатом. Состояние скелета у таких больных улучшается при введении им (наряду с добавками фосфата) физиологических доз l,25-(OH)2-D. Ана­логичное нарушение регуляции почечного синтеза l,25-(OH)2-D фосфатом может происходить у больных с приобретенной гипофосфатемической остеомаляцией, наблюдаемой при мезенхи­мальных опухолях.

За последние несколько лет появились описания случаев ра­хита на фоне повышенного уровня l,25-(OH)2-D в сыворотке у детей. У некоторых больных, помимо поражения костей, отмеча­ются алопеция и (или) аномалии зубов. Недавно проведенные исследования на культуре фибробластов кожи от таких боль­ных выявили отсутствие или нарушение рецепторов l,25-(OH)2-D, которые определяются в культивируемых фибробластах у здоровых лиц. Эти примеры, таким образом, доказывают суще­ствование болезни, которая может быть следствием аномалии рецепторов, опосредующих действие метаболитов витамина D.

Избыточное потребление витамина D — 100 000 ЕД/сут или более (свыше 6,5 мкмоль, или 2,5 мг/сут) сопровождается гиперкальциемией и метастазирующей кальцификацией многих органов. Эта патология является, по-видимому, результатом не­посредственного действия витамина D или, что более вероятно, 25-ОН-D3 на ткани-мишени, так как содержание l,25-(OH)2-D в плазме остается нормальным. Гиперкальциемия часто сохраняется даже после отмены витамина D, что объясняется, очевидно, длительностью периода полужизни 25-OH-D, равно как и накоплением витамина D в жировой ткани, мышцах и пе­чени. При терапевтическом использовании 25-OH-D3 или l,25-(OH)2-D3 также имеется опасность возникновения гипергкальциемии и кальцификации мягких тканей, но при отмене 1,25-(OH)2-D3 она вскоре исчезает вследствие быстрого клирен­са этого метаболита.

Гиперпаратиреоз иногда сопровождается повышением уровня l,25-(OH)2-D в плазме, что отражает стимулирующее влияние ПТГ на почечный синтез этого соединения. С увеличением его концентрации в плазме у таких больных усиливается всасывание кальция в кишечнике и экскреция кальция с мочой. Имеются данные, что у больных первичным гиперпаратиреозом с повышенным уровнем l,25-(OH)2-D в плазме частота нефролитиаза как осложнения основного заболевания возрас­тает вследствие более выраженной гиперкальциурии. Одна­ко по этому вопросу еще сохраняются противоречия.

У ряда больных с нефролитиазом гиперкальциурия регистри­руется при отсутствии гиперкальциемии. В таких случаях гово­рят об идиопатической гиперкальциурии. Известно, что у этих больных всасывание кальция в кишечнике ускорено, а в недавних исследованиях у них отмечается также повышение уровря. l,25-(OH)2-D в плазме, что, вероятно, и обусловливает усиление всасывания кальция. По поводу действия меха­низма активации почечного синтеза l,25-(OH)2-D у таких боль­ных сохраняются противоречивые мнения. У некоторых из них, возможно, имеется первичный дефект, заключающийся в потер0 кальция через почки, а также легкий вторичный гиперпаратиреоз; у других — наличие гипофосфатемии и, следовательно, ка­кое-то нарушение метаболизма фосфата, приводящее к актива­ции синтеза l,25-(OH)2-D. Возможность существования иных, механизмов активации его синтеза у больных этой группы оста­ется неизвестной.

Саркоидоз может сопровождаться гиперкальциурией, гиперкальциемией и реже нефролитиазом или нефрокальцинозом. По­казано, что гиперкальциурия и гиперкальциемия при саркоидозе сопровождают усиление всасывания в кишечнике и повышение чувствительности этого процесса к витамину D. Уровень 1,25-(OH)2-D в сыворотке у таких больных может быть исходно повышенным или чрезмерно возрастать при введении витами­на D2. Так как у здоровых людей введение витамина D2 не увеличивает содержания l,25-(OH)2-D в сыворотке, данные на­блюдения указывают на нарушение регуляции синтеза послед­него при саркоидозе, при котором он оказывается зависимым от доступности предшественников. Недавнее сообщение о лишен­ном почек и находящемся на диализе больном с саркоидозом и гиперкальциемией, у которого содержание l,25-(OH)2-D в сы­воротке было повышенным, свидетельствует о возможности внепочечной продукции l,25-(OH)2-D при саркоидозе (предпо­ложительно — при саркоидной гранулеме).

Уважаемые пациенты, Мы предоставляем возможность записаться напрямую на прием к доктору, к которому вы хотите попасть на консультацию. Позвоните по номеру ,указанному вверху сайта, вы получите ответы на все вопросы. Предварительно, рекомендуем Вам изучить раздел О Нас.

1) Позвонить по номеру 8-863-322-03-16.

1.1) Или воспользуйтесь звонком с сайта:

1.2) Или воспользуйтесь контактной формой:

2) Вам ответит дежурный врач.

3) Расскажите о том, что вас беспокоит. Будьте готовы, что доктор попросит Вас рассказать максимально подробно о своих жалобах с целью определения специалиста, требующегося для консультации. Под руками держите все имеющиеся анализы, особенно, недавно сделанные!

4) Вас свяжут с вашим будущим лечащим доктором (профессором, доктором, кандидатом медицинских наук). Далее, непосредственно с ним вы будете обговаривать место и дату консультации – с тем человеком, кто и будет Вас лечить.

источник