Меню Рубрики

Какой витамин регулирует обмен кальция в организме

В раннем детском возрасте (особенно на первом году жизни) заболевания (или состояния), связанные с нарушением фосфорно-кальциевого обмена, занимают ведущее место.

Это обусловлено чрезвычайно высокими темпами развития ребенка: за первые 12 месяцев жизни масса тела увеличивается в среднем в 3 раза, длина – в 1,5.

Такое интенсивное увеличение размеров тела очень часто сопровождается абсолютным или относительным дефицитом кальция и фосфора в организме.

К развитию кальций- и фосфопенических состояний приводят разнообразные факторы: дефицит витаминов (главным образом витамина D), нарушения метаболизма витамина D в связи с незрелостью ряда ферментных систем, снижение абсорбции фосфора и кальция в кишечнике, а также реабсорбции их в почках, нарушения эндокринной системы, регулирующей фосфорно-кальциевый обмен, отклонения в микроэлементном статусе и многое другое.

Существенно реже встречаются гиперкальциемические состояния. Они носят, как правило, ятрогенный характер, но представляют не меньшую угрозу организму, чем гипокальциемии.

  1. всасывание фосфора и кальция в кишечнике;
  2. взаимообмен их между кровью и костной тканью;
  3. выделение Ca и P из организма – реабсорбция в почечных канальцах.

Основным показателем, характеризующим метаболизм Ca, является его уровень в крови, который в норме составляет 2,3–2,8 ммоль/л (содержание P в крови – 1,3–2,3 ммоль/л).

Все факторы, ухудшающие всасывание кальция в кишечнике и снижающие реабсорбцию его в почках, вызывают гипокальциемию, которая может частично компенсироваться вымыванием Ca из костей в кровь, что приводит к развитию остеомаляции или остеопорозов.

Избыточное всасывание Ca в кишечнике приводит к гиперкальциемии, которая компенсируется за счет усиленного отложения его в кости (зоны роста) и выведения с мочой.

Неспособность организма удержать нормальный уровень Ca крови вызывает либо тяжелые гипокальциемические состояния с проявлениями тетании, либо приводит к гиперкальциемии с картиной токсикоза, отложением Ca в различных тканях и органах.

Суточная потребность в кальции детей грудного возраста равна 50 мг на 1 кг массы, т.е. ребенок во втором полугодии жизни должен получать около 500 мг.

Важнейшим источником его являются молочные продукты: в 100 мл женского молока содержится 30 мг Ca, в таком же количестве коровьего – 120 мг.

Важное значение имеет состояние слизистой оболочки тонкой кишки: синдромы мальабсорбции, энтериты сопровождаются ухудшением всасывания. Главным регулятором всасывания Ca является витамин D.

Основная масса (более 90%) кальция и 70% фосфора находится в костях в виде неорганических солей. В течение всей жизни костная ткань находится в постоянном процессе созидания и разрушения, обусловленном взаимодействием трех типов клеток: остеобластов, остеоцитов и остеокластов. Кости активно участвуют в регуляции метаболизма Ca и P, поддерживая их стабильный уровень в крови. При снижении уровня кальция и фосфора крови (произведение Ca x P является постоянной величиной и равно 4,5-5,0) развивается резорбция кости за счет активации действия остеокластов, что увеличивает поступление в кровь этих ионов; при повышении данного коэффициента происходит избыточное отложение солей в кости.

Половина содержащегося в крови Ca связана с белками плазмы (главным образом с альбумином), из оставшейся части более 80% это ионизированный кальций, способный проходить через стенку капилляра в интерстициальную жидкость. Именно он является регулятором разнообразных внутриклеточных процессов, в том числе проведение специфического трансмембранного сигнала в клетку, поддержание определенного уровня нервно-мышечной возбудимости. Связанный с белками плазмы Ca является резервом для сохранения необходимого уровня ионизированного кальция.

Основными регуляторами фосфорно-кальциевого обмена наряду с витамином D являются паратиреоидный гормон (ПГ) и кальцитонин (КТ) – гормон щитовидной железы.

“Витамин D” — эргокальциферол (витамин D2) и холекальциферол (витамин D3). Эргокальциферол в небольших количествах содержится в растительном масле, ростках пшеницы; холекальциферол – в рыбьем жире, молоке, сливочном масле, яйцах. Физиологическая суточная потребность в витамине D величина достаточно стабильная и составляет 400-500 МЕ. В период беременности и кормления грудным молоком она возрастает в 1,5, максимум в 2 раза.

Нормальное обеспечение организма витамином D связано не только с поступлением его с пищей, но и с образованием в коже под влиянием УФ-лучей с длиной волны 280-310 ммк. При этом из эргостерола (предшественник витамина D2) образуется эргокальциферол, а из 7-дегидрохолестерола (предшественник витамина D3) – холекальциферол. При достаточной инсоляции (по некоторым данным достаточно 10-минутного облучения кистей рук) в коже синтезируется необходимое организму количество витамина D. При недостаточной естественной инсоляции: климатогеографические особенности, условия проживания (сельская местность или промышленный город), бытовые факторы, время года и др. недостающее количество витамина D должно поступать с пищей или в виде лекарственных препаратов. У беременных женщин витамин D откладывается в виде депо в плаценте, что обеспечивает новорожденного некоторое время после рождения антирахитическими веществами.

Основная физиологическая функция витамина D (т.е. его активных метаболитов) в организме – регуляция и поддержание на необходимом уровне фосфорно-кальциевого гомеостаза организма. Это обеспечивается путем влияния на всасывание кальция в кишечнике, отложение его солей в костях (минерализация костей) и реабсорбцию кальция и фосфора в почечных канальцах.

Механизм всасывания кальция в кишечнике связан с синтезом энтероцитами кальций-связывающего белка (СаСБ), одна молекула которого транспортирует 4 атома кальция. Синтез СаСБ индуцируется кальцитриолом через генетический аппарат клеток, т.е. по механизму действия 1,25(OH)2D3 аналогичен гормонам.

В условиях гипокальциемии витамин D временно увеличивает резорбцию костной ткани, усиливает всасывание Ca в кишечнике и реабсорбцию его в почках, повышая тем самым уровень кальция в крови. При нормокальциемии он активирует деятельность остеобластов, снижает резорбцию кости и ее кортикальную порозность.

В последние годы показано, что клетки многих органов имеют рецепторы к кальцитриолу, который тем самым участвует в универсальной регуляции ферментных внутриклеточных систем. Активация соответствующих рецепторов через аденилатциклазу и цАМФ мобилизует Ca и его связь с белком-кальмодулином, что способствует передаче сигнала и усиливает функцию клетки, и соответственно, всего органа.

Витамин D стимулирует реакцию пируват-цитрат в цикле Кребса, обладает иммуномодулирующим действием, регулирует уровень секреции тиреотропного гормона гипофиза, прямо или опосредованно (через кальциемию) влияет на выработку инсулина поджелудочной железой.

Вторым важнейшим регулятором фосфорно-кальциевого обмена является паратгормон. Продукция данного гормона паращитовидными железами усиливается при наличии гипокальциемии, и, особенно, при снижении в плазме и внеклеточной жидкости концентрации ионизированного кальция. Основными органами-мишенями для паратгормона являются почки, кости и в меньшей степени желудочно-кишечный тракт.

Действие паратгормона на почки проявляется увеличением реабсорбции кальция и магния. Одновременно снижается реабсорбция фосфора, что приводит к гиперфосфатурии и гипофосфатемии. Считается также, что паратгормон повышает способность образования в почках кальцитриола, усиливая тем самым абсорбцию кальция в кишечнике.

В костной ткани под влиянием паратгормона кальций костных апатитов переходит в растворимую форму, благодаря чему происходит его мобилизация и выход в кровь, сопровождающаяся развитием остеомаляции и даже остеопороза. Таким образом, паратгормон является основным кальцийсберегающим гормоном. Он осуществляет быструю регуляцию гомеостаза кальция, постоянная регуляция – функция витамина D и его метаболитов. Образование ПГ стимулируется гипокальциемией, при высоком уровне Ca в крови его продукция уменьшается.

Третьим регулятором кальциевого обмена является кальцитонин – гормон, вырабатываемый С-клетками парафолликулярного аппарата щитовидной железы. По действию на гомеостаз кальция он является антагонистом паратгормона. Его секреция усиливается при повышении уровня кальция в крови и уменьшается при понижении. Диета с большим количеством кальция в пище также стимулирует секрецию кальцитонина. Этот эффект опосредуется глюкагоном, который таким образом является биохимическим активатором выработки КТ. Кальцитонин защищает организм от гиперкальциемических состояний, снижает количество и активность остеокластов, уменьшая рассасывание костей, усиливает отложение Ca в кости, предотвращая развитие остеомаляции и остеопороза, активирует выведение его с мочой. Предполагается возможность ингибирующего влияния КТ на образование в почках кальцитриола.

На фосфорно-кальциевый гомеостаз, кроме трех выше описанных (витамин D, паратгормон, кальцитонин), оказывает влияние множество других факторов. Микроэлементы Mg, Al являются конкурентами Ca в процессе всасывания; Ba, Pb, Sr и Si могут замещать его в солях, находящихся в костной ткани; гормоны щитовидной железы, соматотропный гормон, андрогены активируют отложение кальция в кости, снижают его содержание в крови, глюкокортикоиды способствуют развитию остеопороза и вымыванию Ca в кровь; витамин А является антагонистом витамина D в процессе всасывания в кишечнике. Однако патогенное влияние этих и многих других факторов на фосфорно-кальциевый гомеостаз проявляется, как правило, при значительных отклонениях содержания этих веществ в организме.

Нарушения фосфорно-кальциевого обмена у детей раннего возраста чаще всего проявляются:

источник

Фосфорно-кальциевый обмен: норма, нехватка, причины, проведение анализов, симптомы, лечение и восстановление баланса

Заболевания, связанные с изменением фосфорно-кальциевого обмена, встречаются у людей обоих полов вне зависимости от возраста. Фосфор и кальций являются жизненно необходимыми, незаменимыми для полноценного здоровья человека химическими веществами. Наверняка каждый из нас знает, что в составе костной ткани содержится более 90 % кальция и порядка 80 % запасов фосфора со всего организма. В незначительном количестве эти компоненты имеются в ионизированной плазме крови, нуклеиновых кислотах и фосфолипидах.

В течение первого года жизни риск нарушения обменных процессов наиболее высок, что связывают со стремительным ростом и темпами развития малыша. В норме ребенок за первые 12 месяцев утраивает массу тела, данную от рождения, а с 50 среднестатистических сантиметров при рождении годовалый карапуз вырастает до 75. У детей фосфорно-кальциевый обмен проявляется относительным или абсолютным дефицитом полезных минералов и веществ в организме.

К появлению подобных проблем приводят многочисленные факторы:

  • недостаток витамина D;
  • нарушение его метаболизма из-за незрелости ферментных систем;
  • ухудшение кишечной абсорбции и почечной реабсорбции фосфора и кальция;
  • заболевания эндокринной системы.

Намного реже диагностируются гиперкальциемические состояния, которые представляют собой переизбыток кальция и фосфора. Чрезмерное количество химических веществ в организме не менее опасно для здоровья ребенка и требует медикаментозной коррекции. Однако добиться такого состояния при обычном рационе практически невозможно. Так суточная потребность в кальции у грудничков приравнивается 50 мг на 1 кг массы тела. Следовательно ребенок, который весит около 10 кг, должен получать ежедневно около 500 мг Са. В 100 мл материнского молока, которое является единственным источником полезных веществ, содержится около 30 мл Са, а в коровьем – более 100 мг.

После попадания указанных химических веществ в организм происходит их всасывание в кишечнике, затем взаимообмен между кровью и костной тканью с последующим выделением кальция и фосфора из организма с мочой. Данный этап именуется реабсорбцией, которая протекает в почечных канальцах.

Главным показателем успешно пройденного обмена Ca является его концентрация в крови, которая в норме варьируется в пределах 2,3–2,8 ммоль/л. Оптимальным содержанием фосфора в крови считается 1,3–2,3 ммоль/л. Важными регуляторами в кальциево-фосфорного обмена является витамин D, паратиреоидный гормон и кальцитонин, вырабатывающийся щитовидной железой.

Половина содержащегося в крови кальция имеет непосредственную связь с плазменными белками, в частности альбумином. Остальная часть – это ионизированный кальций, который просачивается через капиллярные стенки в лимфатическую жидкость. Ионизированный кальций служит регулятором множества внутриклеточных процессов, включая передачу импульсов через мембрану в клетку. Благодаря этому веществу в организме поддерживается определенный уровень нервно-мышечной возбудимости. Кальций, связанный с белками плазмы, представляет собой своего рода резервный запас для сбережения минимального уровня ионизированного кальция.

Преимущественная доля фосфора и кальция сосредоточена в неорганических солях костной ткани. На протяжении всей жизни твердые ткани формируются и разрушаются, что обусловлено взаимодействием нескольких типов клеток:

Костная ткань активно участвует в регуляции фосфорно-кальциевого обмена. Биохимия данного процесса гарантирует поддержание их стабильного уровня в крови. Как только концентрация данных веществ падает, что становится явно по показателю 4,5-5,0 (его высчитывают по формуле: Са, умноженный на Р), кость начинает стремительно разрушаться по причине повышенной активности остеокластов. Если данный показатель значительно превышает указанный коэффициент, соли начинают откладываться в костях в избыточном количестве.

Все факторы, негативно влияющие на поглощение кальция в кишечнике и ухудшающие его почечную реабсорбцию, являются прямыми причинами развития гипокальциемии. Нередко при данном состоянии происходит вымывание Ca из костей в кровоток, что неизбежно ведет к остеопорозу. Излишнее всасывание кальция в кишечнике, наоборот, влечет за собой развитие гиперкальциемии. В этом случае патофизиология фосфорно-кальциевого обмена компенсируется интенсивным отложением Са в кости, а оставшаяся часть покидает организм вместе с мочой.

Если организм оказывается неспособным поддержать нормальный уровень кальция, вполне закономерным следствием являются заболевания, вызванные дефицитом химического элемента (как правило, наблюдаются проявления тетании) либо его переизбытком, что характеризуется развитием токсикоза, отложением Ca на стенках внутренних органов, хрящей.

В регуляции фосфорно-кальциевого обмена участвует эргокальциферол (D2) и холекальциферол (D3). Первая разновидность вещества присутствует в малых количествах в маслах растительного происхождения, пшеничных ростках. Витамин D3 более популярен – о его роли в процессах усвоения кальция известно каждому. Холекальциферол содержится в рыбьем жире (преимущественно лососевом и тресковом), куриных яйцах, молочных и кисломолочных продуктах. Суточная потребность человека в витамине D составляет приблизительно 400-500 МЕ. Потребность в данных веществах увеличивается у женщин в период беременности и лактации, поэтому может достигать 800-1000 МЕ.

Полноценное поступление в организм холекальциферола можно обеспечить не только потреблением указанных продуктов или витаминных добавок к пище. Витамин D образуется в кожных покровах под воздействием УФ-лучей. При минимальной продолжительности инсоляции в эпидермисе происходит синтез необходимого организму количества витамина D. По некоторым данным достаточно десяти минут пребывания на солнце с открытыми кистями рук.

Причиной недостатка естественной ультрафиолетовой инсоляции являются, как правило, метеоклиматические и географические условия местности проживания, а также бытовые факторы. Возместить недостаток витамина D можно, употребляя продукты с повышенным содержанием холекальциферола или принимая лекарственные препараты. У беременных женщин данное вещество накапливается в плаценте, что гарантирует новорожденному защиту от рахита на протяжении первых месяцев жизни.

Поскольку основным физиологическим предназначением витамина D является участие в процессах биохимии фосфорно-кальциевого обмена, нельзя исключать его роль в обеспечении полноценного всасывания кальция кишечными стенками, отложение солей микроэлемента в костных тканях, реабсорбции фосфора в почечных канальцах.

В условиях дефицита кальция холекальциферол запускает процессы деминерализации костей, усиливает всасывание Ca, стараясь повысить тем самым уровень его содержания в крови. Как только концентрация микроэлемента достигает нормы, начинают действовать остеобласты, которые снижают резорбцию кости и препятствуют ее кортикальной порозности.

Ученые смогли доказать, что клетки внутренних органов чувствительны к кальцитриолу, участвующему в системной регуляции ферментных систем. Запуск соответствующих рецепторов через аденилатциклазу обуславливает взаимодействие кальцитриола с белком-кальмодулином и усиливает передачу импульса ко всему внутреннему органу. Эта связь производит иммуномодулирующий эффект, обеспечивает регуляцию гипофизарных гормонов, а также косвенно влияет на продуцирование инсулина поджелудочной железой.

Не менее значимым регулятором является паратгормон. Вырабатывается данное вещество паращитовидными железами. Количество паратиреоидного гормона, регулирующего фосфорно-кальциевый обмен, повышается в крови при недостатке поступления Са, ведущего за собой снижение в плазме содержания ионизированного кальция. В этом случае гипокальциемия становится косвенной причиной поражения почек, костей и пищеварительной системы.

Паратиреоидный гормон провоцирует увеличение кальциевой и магниевой реабсорбции. При этом реабсорбция фосфора заметно снижается, что приводит к гипофосфатемии. В ходе лабораторных исследований удалось доказать, что паратгормон увеличивает вероятность проникновения в почки кальцитриола и, как следствие, повышения кишечной абсорбции кальция.

Читайте также:  Мясо свинина какой в нем витамин

Присутствующий в костной ткани под воздействием паратгормона кальций меняет твердую форму на растворимую, за счет чего химический элемент мобилизуется и выходит в кровь. Патофизиология фосфорно-кальциевого обмена объясняет развитие остеопороза.

Таким образом, паратиреоидный гормон помогает сберегать нужное количество кальция в организме, участвуя в гомеостазе данного вещества. При этом функцией постоянной регуляции фосфора и кальция в организме наделен витамин D и его метаболиты. Продуцирование паратгормона стимулируется низким содержанием кальция в крови.

Фосфорно-кальциевый обмен нуждается в третьем незаменимом участнике – кальцитонине. Это также гормональное вещество, вырабатываемое С-клетками щитовидной железы. На гомеостаз кальция кальцитонин действует как антагонист паратгормона. Темпы продуцирования гормона возрастают при повышенной концентрации уровня фосфора и кальция в крови и снижаются при недостающем поступлении в организм соответствующих веществ.

Спровоцировать активную секрецию кальцитонина можно с помощью диетического питания, обогащенного кальцийсодержащими продуктами. Данный эффект нейтрализуется глюкагоном – естественным стимулятором выработки кальцитонина. Последний оберегает организм от гиперкальциемических состояний, минимизирует активность остеокластов и не допускает рассасывания костей путем интенсивного накопления Ca в костной ткани. «Лишний» кальций, благодаря кальцитонину, выводится из организма с мочой. Предполагается возможность ингибирующего влияния стероида на образование в почках кальцитриола.

Помимо паратиреоидного гормона, витамина D и кальцитонина, влиять на фосфорно-кальциевый обмен способны и другие факторы. Так, например, препятствовать всасыванию Са в кишечнике могут такие микроэлементы, как магний, алюминий, силен, замещая кальциевые соли костной ткани. При затяжном лечении глюкокортикоидами развивается остеопороз, и кальций вымывается в кровь. В процессе всасывания в кишечнике витамина А и витамина D преимущество имеет первый, поэтому употреблять продукты, содержащими данные вещества, необходимо в разное время.

Наиболее распространенным нарушением фосфорно-кальциевого обмена считается гиперкальциемия. Повышенное содержание Са в сыворотке крови (более 2,5 ммоль/л) – характерная особенность гиперсекреции околощитовидных желез и гипервитаминоза D. В анализах фосфорно-кальциевого обмена увеличенное содержание кальция может свидетельствовать о наличии злокачественной опухоли в организме или синдроме Иценко-Кушинга.

Высокая концентрация данного химического элемента свойственна пациентам с язвенной болезнью желудочно-кишечного тракта. Зачастую причиной становится чрезмерное употребление молочных продуктов. Гиперкальциемия – идеальное условие для образования конкрементов в почках. Фосфорно-кальциевый обмен влияет на работу всей мочевыделительной системы, понижает нервно-мышечную проводимость. В тяжелых случаях не исключается вероятность развития пареза и паралича.

У ребенка следствием затяжной гиперкальциемии может стать задержка роста, регулярные расстройства стула, постоянная жажда, мышечный гипотонус. При нарушениях фосфорно-кальциевого обмена у детей развивается артериальная гипертензия, поражается ЦНС, что выражается спутанностью сознания, провалами памяти.

Гипокальциемия диагностируется намного чаще, чем гиперкальциемия. В большинстве случаев выясняется, что причиной недостатка кальция в организме служит гипофункция околощитовидных желез, активная выработка кальцитонина и плохая всасываемость вещества в кишечнике. Кальциевый дефицит нередко развивается в послеоперационном периоде как ответная реакция организма на введение внушительной дозы щелочного раствора.

У пациентов с нарушениями фосфорно-кальциевого обмена симптомы выглядят следующим образом:

  • возникает повышенная возбудимость нервной системы;
  • развивается тетания (болезненные сокращения мышц);
  • постоянным становится ощущение «мурашек» на коже;
  • возможны приступы судорог и нарушения дыхательных функций.

Это наиболее распространенное последствие расстройств, связанных с фосфорно-кальциевым обменом в организме. Для данного патологического состояния свойственна низкая масса кости и изменение структуры костной ткани, что приводит к повышению ее ломкости и хрупкости, а значит, и возрастанию риска перелома. Врачи практически единогласно сходятся во мнении о том, что остеопороз является болезнью современного человека. Риск развития остеопороза особенно высок в пожилом возрасте, однако при отрицательном влиянии технического прогресса, снижении физической активности и воздействии ряда неблагоприятных экологических факторов возрастает удельный вес пациентов зрелого возраста.

Каждый год остеопороз диагностируется у 15-20 млн человек. Преимущественное большинство пациентов – женщины в климактерический период, а также молодые женщины после удаления яичников, матки. Порядка 2 млн случаев переломов ежегодно имеют связь с остеопорозом. Это и переломы шейки бедра, позвоночника, костей конечностей и других участков скелета.

Если брать во внимание сведения от ВОЗ, то патологии скелета и костной ткани по распространенности среди населения Земли уступают только сердечно-сосудистым, раковым заболеваниям и сахарному диабету. Остеопороз способен поразить различные участки скелета, поэтому переломам могут подвергаться любые кости, особенно если недугу сопутствует значительная потеря массы тела.

Метаболические заболевания скелета, в частности остеопороз, характеризуются существенным снижением концентрации микроэлементов, при котором кость резорбируется намного быстрее, чем формируется. Таким образом, теряется костная масса и возрастает риск перелома.

Данный недуг является прямым следствием сбоев в фосфорно-кальциевом обмене. Рахит развивается, как правило, в раннем детском возрасте (до трех лет) при нехватке витамина D и нарушениях процессов всасывания микроэлементов в тонком кишечнике и почках, что ведет к изменению пропорции кальция и фосфора в крови. Стоит отметить, что и взрослые люди, проживающие в северных широтах, нередко испытывают проблемы с фосфорно-кальциевым метаболизмом из-за недостатка ультрафиолетового облучения и непродолжительного пребывания на свежем воздухе в течение года.

На начальном этапе заболевания диагностируется гипокальциемия, которая запускает работу околощитовидных желез и вызывает гиперсекрецию паратгормона. Далее, как по цепочке: активируются остеокласты, нарушается синтез белковой основы кости, минеральные соли откладываются в недостающем количестве, вымывание кальция и фосфора приводит к гиперкальциемии и гипофосфатемии. В результате у ребенка происходит задержка физического развития.

Характерными проявлениями рахита являются:

  • анемия;
  • повышенная возбудимость и раздражительность;
  • судороги конечностей и развитие мышечного гипотонуса;
  • усиленное потоотделение;
  • расстройства пищеварительной системы;
  • учащенное мочеиспускание;
  • Х-образные или О-образных голени;
  • запоздалое прорезывание зубов и склонность к стремительному прогрессированию кариозной инфекции ротовой полости.

При метаболических нарушениях требуется сложное комплексное лечение. Фосфорно-кальциевый обмен, приведенный в норму, позволит устранить большинство патологических последствий без какого-либо вмешательства. Терапия остеопороза, рахита и других метаболических нарушений проходит поэтапно. В первую очередь специалисты стараются остановить процессы резорбции с целью предотвратить переломы, устранить болевой синдром и вернуть больного к трудоспособному состоянию.

Препараты для кальциево-фосфорного обмена подбираются, исходя из симптоматики вторичного заболевания (чаще всего остеопороза, рахита) и патогенеза костной резорбции. Немаловажное значение для выздоровления имеет соблюдение диеты, выстроенной по принципу сбалансированности белков, солей кальция и фосфора. В качестве вспомогательных методов терапии больным рекомендуется массаж, лечебная гимнастика.

В первую очередь больным назначают лекарства с высоким содержанием витамина D. Данные препараты условно разделяются на две группы – средства на основе холекальциферола и эргокальциферола.

Первое вещество стимулирует всасываемость в кишечнике за счет улучшения проницаемости эпителиальных мембран. В основном, витамин D3 применяется для профилактики и лечения рахита у малышей. Выпускается в водорастворимой («Аквадетрим») и масляной формах («Вигантол», «Видеин»).

Эргокальциферол всасывается в кишечнике при активной выработке желчи, после чего связывается альфа-глобулинами крови, накапливается в костной ткани, остается в качестве неактивного метаболита печени. Имеющий широкое применение в недавнем прошлом рыбий жир сегодня не рекомендуется педиатрами. Причиной отказа от использования данного средства служит вероятность возникновения побочных эффектов со стороны поджелудочной железы, но, несмотря на это, в аптеках по-прежнему предлагают рыбий жир в виде БАДа.

Помимо витамина D, в лечении нарушений фосфорно-кальциевого обмена используют:

  • Монопрепараты кальция, содержащие необходимый химический элемент в виде солей. Вместо популярного ранее «Глюконата кальция», который плохо всасывается в кишечнике, теперь применяют «Глицерофосфат кальция», «Кальция лактат», «Хлорид кальция».
  • Комбинированные препараты. Чаще всего комплексы, сочетающие в своем составе кальций, витамин D и другие микроэлементы для облегчения поглощения ионов кальция («Натекаль», «Витрум кальций + витамин Д3», «Ортокальций» с магнием и др.
  • Синтетические аналоги паратиреоидного гормона. Используются инъекционно или в виде назальных спреев. В таблетках такие препараты не выпускаются, так как при пероральном применении действующие вещества полностью разрушаются в желудке. К данной группе относят спреи «Миакальцик», «Вепрена», «Остеовер», порошок «Кальцитонин».

источник

За обмен кальция и фосфатов в организме отвечают три гормона – кальцитриол, кальцитонин и паратиреоидный гормон.

Представляет собой производное витамина D и относится к стероидам.

Образующийся в коже под действием ультрафиолета и поступающие с пищей холекальциферол (витамин D3) и эргокальциферол (витамин D2) гидроксилируются в гепатоцитах по С25 и в эпителии проксимальных канальцев почек по С1. В результате формируется 1,25-диоксихолекальциферол (кальцитриол).

Активируют: Гипокальциемия повышает гидроксилирование витамина D по С1 в почках через увеличение секреции паратгормона, стимулирующего этот процесс.

Уменьшают: Избыток кальцитриола подавляет гидроксилирование по С1 в почках.

Рецепторы к кальцитриолу обнаружены практически во всех тканях. Эффекты гормона могут быть геномные и негеномные, эндокринные и паракринные.

1. Геномный эффект кальцитриола заключается в регуляции концентрации кальция и фосфора в крови:

  • в кишечнике индуцирует синтез белков, отвечающих за всасывание кальция и фосфатов,
  • в почечных канальцах повышает синтез белков-каналов для реабсорбции ионов кальция и фосфатов,
  • в костной ткани усиливает активность остеобластов и остеокластов.

2. Посредством негеномных паракринных механизмов гормон регулирует количество ионов Ca 2+ в клетке

  • способствует минерализации кости остеобластами,
  • влияет на активность иммунных клеток, модулируя их иммунные реакции,
  • участвует в проведении нервного возбуждения,
  • поддерживает тонус сердечной и скелетной мускулатуры,
  • влияет на пролиферацию клеток.

3. Также действие кальцитриола сопровождается подавлением секреции паратиреоидного гормона.

Представляет собой пептид из 84 аминокислот с молекулярной массой 9,5 кДа.

Идет в паращитовидных железах. Реакции синтеза гормона высоко активны.

Активирует образование гормона гипокальциемия.

Уменьшают высокие концентрации кальция через активацию кальций-чувствительной протеазы, гидролизующей один из предшественников гормона.

Эффект паратиреоидного гормона заключается в увеличении концентрации кальция и снижении концентрации фосфатов в крови.

Это достигается тремя способами:

  • при высоком уровне гормона активируются остеокласты и происходит деструкция костной ткани,
  • при низких концентрациях активируется перестройка кости и остеогенез.
  • увеличивается реабсорбция кальция и магния,
  • уменьшается реабсорбция фосфатов, аминокислот, карбонатов, натрия, хлоридов, сульфатов.
  • также гормон стимулирует образование кальцитриола (гидроксилирование по С1).

Возникает при случайном удалении железы при операциях на щитовидной железе или при аутоиммунной деструкции ткани желез. Возникающая гипокальциемия и гиперфосфатемия проявляется в виде высокой нервно-мышечной возбудимости, судорог, тетании. При резком снижении кальция возникает дыхательный паралич, ларингоспазм.

Первичный гиперпаратиреоз возникает при аденоме желез. Нарастающая гиперкальциемия вызывает повреждение почек, мочекаменную болезнь.

Вторичный гиперпаратиреоз является результатом почечной недостаточности, при которой происходит нарушение образования кальцитриола, снижение концентрации кальция в крови и компенсаторное возрастание синтеза паратиреоидного гормона.

Представляет собой пептид, включающий 32 аминокислоты с молекулярной массой 3,6 кДа.

Осуществляется в парафолликулярных клетках щитовидной железы.

Активируют: ионы кальция, глюкагон.

Эффект кальцитонина заключается в уменьшении концентрации кальция и фосфатов в крови:

  • в костной ткани подавляет активность остеокластов, что улучшает вход кальция и фосфатов в кость,
  • в почках подавляет реабсорбцию ионов Ca 2+ , фосфатов, Na + , K + , Mg 2+ .

источник

3 Апр 2017 г.

По своей значимости кальций – одним из наиважнейших макроэлементов человеческого организма. От его баланса зависят многие внутренние процессы, связнные с обменом веществ и правильным функционированием отдельных систем и органов.

В норме общее количество кальция в организме человека составляет 2% от общей массы и может достигать 1,5 – 2,2 кг. Около 99% его находится в костях скелета в виде апатитов и карбонатов, а 1% в ионизированной форме циркулирует в крови и других жидкостях организма.

Роль кальция в жизнедеятельности человеческого организма чрезвычайно важна:

  • в работе нервной системы: кальций помогает передавать нервные импульсы. Его нехватка сказывается усталостью, сонливостью, раздражительностью, потерей памяти и рассеянным вниманием;
  • в крови: участвует в процессах свертываемости;
  • в функционировании сердечно-сосудистой системы: кальций – один из регуляторов силы и частоты сердечных сокращений, интенсивности коронарного кровообращения, обеспечивающий бесперебойную, ритмичную работу сердца;
  • в иммунной системе: участвует в процессах, повышающих сопротивляемость организма к инфекционным заболеваниям;
  • в работе эндокринной системы: составной компонент гормонов, отвечающих за рост и физическое развитие детей.

Кроме того, кальций снижает проявление аллергических реакций во время отдельных болезней, участвует в антиоксидантной защите, способствует улучшению кровотока и нормализации артериального давления, предотвращает развитие мочекаменной болезни.

Препараты кальций-регулирующей серии производства «Рефарм»

Цена на нашу продукцию в магазинах партнеров может отличаться

Цена на нашу продукцию в магазинах партнеров может отличаться

Цена на нашу продукцию в магазинах партнеров может отличаться

Причины, которые приводят к нарушениям обмена кальция и его дефициту, условно можно разделить на несколько групп:

  • рацион, с недостаточным количеством кальцийсодержащих продуктов: диеты, несбалансированное питание, голодание;
  • постоянное употребление воды с малым содержанием кальция;
  • чрезмерное употребление продуктов, которые ускоряют выведение кальция из организма: чай, кофе, сладкие газированные напитки.
  • желудочно-кишечного тракта, нарушающие абсорбацию кальция: дисбактериоз, кандидоз, пищевые аллергии и пр.;
  • почек;
  • поджелудочной железы (панкреатит);
  • эндокринных органов (различные виды гипопаратиреоза);
  • опорно-двигательного аппарата (остеопороз).

2) нарушение обменных процессов:

  • избыток в организме отдельных макроэлементов (свинца, цинка, магния, железа и др.);
  • дефицит витамина Д.

В числе отдельных причин, формирующих дефицит кальция, может быть нарушение его усвояемости в старческом возрасте, длительное или системное применение мочегонных или слабительных препаратов, повышенная потребность в элементе при определенных состояниях (беременность, климакс, физические и психические нагрузки).

При незначительных отклонениях в содержании кальция в оргаизме нормализовать его можно при помощи диеты, основанной на употреблении кальцийсодержащих продуктов и применении препаратов кальция в виде моно- или комбинированных препаратов, поливитаминных комплексов с минералами (кальций Д3 никомед, кальция лактат, компливит, элевит). Более сложно обстоит дело с восстановлением обмена кальция при его нарушениях. В зависимости от степени и причин патологии в восстановлении кальциевого обмена могут быть задействованы следующие группы средств:

  • препараты паратгормона: устраняют вымывание кальция из костей, нормализуют реабсорбацию кальция в почечных канальцах, тем самым, исключая возможность потери кальция с мочой;
  • кальцитриол (активная форма витамина Д3): увеличивает всасывание кальция и фосфатов в кишечнике и их реабсорбцию в проксимальных канальцах почек, подавляет секрецию паратиреоидного гормона, регулирует процесс минерализации кости. Стимулирует остеобласты, участвует в росте и дифференцировке клеток;
  • кальцитонин: ингибирует резорбцию кости и канальцевую реабсорбацию кальция, тем самым, понижая его концентрацию в крови;
  • бисфосфонаты (этидронат, золедронат, КСИкрем, акласта): препараты многоуровневого действия, регулирующие обмен кальция на уровне клетки. Блокируя деятельность остеокластов, предупреждают разрушение костной ткани, восстанавливают костную структуру, способствуют выведению солей кальция и предупреждают их патологическое отложение в тканях, обладают обезболивающим, противовоспалительным действием.

источник

В организме взрослого человека содержится около 1,2 кг кальция. Соли кальция образуют минеральный компонент костей (99% всего кальция организма, 87% фосфора). Кальций в костях находится в форме минерала гидроксиапатита Са10(РО4)6(ОН)2. Другой фонд кальция в организме — это ионы Са 2+ , растворенные в жидкостях или соединенные с белками жидкостей и тканей. Между этими фондами происходит постоянный обмен кальцием.

Ионы Са 2+ являются кофакторами многих ферментов, вместе с белками-модуляторами служат посредником в передаче сигналов. Кальций участвует в секреции, оплодотворении, мембранной проницаемости, свертывании крови, мышечном сокращении.

В среднем взрослый мужчина потребляет 900-1000 мг кальция/день, взрослая женщина — 600-700 мг кальция/день, из которых в пищеварительном тракте всасывается до 20-40 %. Значительная часть попавшего с пищей кальция проходит через кишечник и покидает организм вместе с калом. Оставшиеся 200 мг всосавшегося в кишечнике кальция элиминируются из организма преимущественно с мочой. В норме в организме сохраняется устойчивое равновесие кальция.

Читайте также:  Какие витамины попить для сил

Всасывание кальция в кишечнике осуществляется за счет активного транспорта против электрохимического градиента, за счет пассивной диффузии. Через клеточную мембрану кальций переносится при помощи зависимого от витамина Д кальцийсвязывающего белка (КСБ). Всасывание кальция в кишечнике в норме определяется не его поступлением с пищей, а гормональной регуляцией системы активного транспорта. Почки участвуют в обмене кальция посредством фильтрации и реабсорбции.

Обмен кальция тесно связан с обменом фосфорной кислоты, образующей с кальцием плохо растворимые соли: фосфат, гидрофосфат, дигидрофосфат.

Общий фосфат взрослого мужчины массой 70 кг составляет около 700 г, из которых

85% находится в костях и зубах,

14% содержится внутри клеток в органической форме как компонент АТФ и фосфолипидов. Во внеклеточных жидкостях фосфат находится в форме фосфолипидов (около 70%) и неорганического фосфата. В плазме крови фосфаты представлены в виде свободных ионов (80%) либо связаны с белками. Одной из основных функций неорганического фосфата в организме является буферная функция.

Средний статистически взрослый человек ежедневно потребляет 800-1200 мг фосфора, из которых около 80% абсорбируется в кишечнике, и такое же количество экскретируется почками. Основные механизмы транспорта фосфатов в кишечнике: активный натрий-зависимый транспорт; пассивный транспорт по градиенту концентрации. Степень адаптации всасывания фосфатов в кишечнике к изменению потребления фосфатов мала, и поэтому кишечник играет небольшую роль в гомеостазе фосфатов.

Почки играют главную роль в гомеостатической регуляции баланса фосфатов во всем организме. Поступление фосфата в клетку проксимального канальца осуществляется посредством Na/Pi- котранспортеров.

Фосфат может связывать свободный ионизированный кальций; поэтому, если уровень плазменного неорганического фосфата увеличивается, содержание кальция уменьшается.

Концентрация ионов Са 2+ в межклеточной жидкости и крови равна 9-11 мг/дл. Половина из них – ионы Са 2+ в растворенном состоянии, другая половина – в соединении с альбумином. Во внутриклеточной жидкости концентрация кальция в тысячи раз меньше. Разность концентраций создается главным образом Са-АТФазой при участии системы ионных каналов. Концентрация Са 2+ в крови и межклеточной жидкости регулируется эндокринными гормонами, в основном паратгормоном, кальцитонином и кальцитриолом.

Паратгормон– это пептидный гормон (84 аминокислотных остатка), образующийся в паращитовидных железах. Биологическая активность паратгормона (ПТГ) определяется только первыми 32-34 аминокислотами (считая от N-окончания пептида). Это наиболее важный регулятор гомеостаза кальция.

Основными органами-мишенями пapaтгормона являются кости и почки. Мембраны клеток этих органов содержат специфические рецепторы паратгормона, связанные с аденилатциклазой. ПТГ-рецепторы обнаружены также в легких, сердечно-сосудистой системе, коже, эритроцитах и т.д.

Выявлены 2 основных механизма действия паратгормона: активация системы аденилатциклаза — циклический АМФ (аденозинмонофосфат) — протеинкиназа А и системы фосфатидилинозитол — протеинкиназа С.

В костях активация аденилатциклазы стимулирует метаболическую активность остеокластов, начинается резорбция кости и поступление Са 2+ и фосфатов в кровь. В почках паратгормон увеличивает реабсорбцию Са 2+ и увеличивает экскрецию почечных фосфатов. ПТГ также стимулирует экспрессию генов и увеличивает производство нескольких местных белковых факторов и простагландинов.

Синтез и секреция ПТГ стимулируются при снижении концентрации Са 2+ в крови. Восстановление нормальной концентрации Са 2+ в крови приводит к прекращению синтеза и секреции гормона. В паратиреоидных клетках обнаружены специфические кальциевые рецепторы. Они обеспечивают чувствительность околощитовидных желез к изменениям сывороточной концентрации кальция, что ведет к изменениям секреции ПТГ. В почках Са-рецептор является важным регулятором экскреции кальция с мочой.

Витамин D3 является предшественником вещества, функционирующего как стероидный гормон – кальцитриола. Образование кальцитриола стимулируется преимущественно ПТГ и гипофосфатемией. Превращение витамина в кальцитриол происходит с участием печени и почек. Специфические гидроксилазы, которые катализируют эти реакции, активируются паратгормоном.

Синтезированный в почках 1,25(OH)2Д3 витамин Д-связывающим белком переносится к клеткам-мишеням, где реагирует с ядерным рецептором. Органы-мишени кальцитриола – тонкий кишечник и кости. В тонком кишеч нике гормон стимулирует всасывание кальция и фосфатов, в костях – мобилизацию кальция. Кальцитриол активирует гены, контролирующие синтез определенных белков, например, кальцийсвязывающего белка, участвующего во всасывании кальция. Кальцитриол может также стимулировать реабсорбцию кальция (и фосфата) в канальцах почек.

Т. о., паратгормон и витамин D3 — синергисты в отношении мобилизации кальция из костей и повышения его концентрации в крови.

При недостаточности витамина D у детей развивается рахит. Происходит нарушение минерализации растущих костей, они не имеют нормальной жесткости, наблюдаются различные деформации скелета – выгнутые наружу голени, вывернутые внутрь колени, «четки» на ребрах, «птичья грудь» и др. Рахит обычно излечивается витамином D, однако есть формы, не поддающиеся такому лечению: они связаны с нарушением превращения витамина D3 в организме в кальцитриол.

Продолжительное поступление избыточного количества витамина D (в несколько раз больше нормы) приводит к деминерализации костей, к повышению концентрации кальция в крови и его отложению в мягких тканях, к образованию камней в мочевых путях.

Кальцитонин – пептидный гормон (32 аминокислотных остатка), синтезируется в С-клетках паращитовидных и щитовидной желез. Секреция кальцитонина увеличивается при возрастании содержания кальция в крови. Эффекты КТ обусловлены его воздействием на специфические кальцитониновые рецепторы (КТР) и противоположны эффектам ПТГ. Основной орган-мишень для кальцитонина — кости, где он подавляет мобилизацию кальция. Он снижает концентрацию Са в сыворотке. Общий вклад кальцитонина в гомеостаз кальция очень мал по сравнению с ролью ПТГ и витамина Д.

Другие системные гормоны также оказывают влияние на скелет, особенно соматотропин, глюкокортикоиды, гормоны щитовидной железы и половые гормоны. Некоторые факторы имеют местные эффекты, например, простагландины, цитокины.

Изменение концентрации кальция во внеклеточной жидкости приводит к изменению его концентрации внутри клеток: изменяются трансмембранные градиенты концентраций Са 2+ , нарушается функционирование кальциевого насоса, зависимых от кальция ферментов и регуляторных систем.

При гипокальциемии наблюдаются судороги, гиперрефлексы, спазмы гортани. Это – следствие снижения порога возбуждения нервных и мышечных клеток. Гипокальциемия может быть следствием нарушения всасывания кальция в кишечнике, например, при гиповитаминозе D, при большом содержании в пище оксалата или других соединений, связывающих кальций. Тяжелая гипокальциемия бывает редко. Наиболее частая ее причина – гипопаратиреоз, вызванный повреждением паращитовидных желез при операциях на щитовидной железе. При гиперкальциемии снижается нервно-мышечная возбудимость; наступает е расстройство нервных функций – психозы, ступор и даже кома. Характерные симптомы – кальцификация мягких тканей и образование камней в мочевых путях. Чаще всего причиной гиперкальциемии бывает гиперпаратиреоз как результат образования опухоли из клеток паращитовидных желез; передозировка витамина D.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Паращитовидные (околощитовидные) железы – это железы внутренней секреции, продуцирующие гормон, участвующий в регуляции кальциевого и фосфорного обмена. Их главная роль – регулировать уровень кальция в организме так, чтобы нервная и двигательная системы функционировали нормально. Когда уровень кальция в крови падает ниже определённого уровня, рецепторы паращитовидных желез, чувствительные к кальцию, активируются и выделяют в кровь паратгормон. Он стимулирует процесс выделения в кровь кальция из костной ткани. Паратгормон представляет собой сложное белковое вещество. Деятельность паратгормона направлена в основном на повышение концентрации кальция и снижение концентрации фосфатов в крови.

Кальций в организме человека играет исключительно важную роль. Ионы кальция принимают участие во многих процессах обмена веществ внутри клеток всех тканей человеческого организма. Кальций участвует в передаче нервного импульса из нервной системы к мышцам и в процессе сокращения мышечной ткани. Он – один из необходимых компонентов свертывающей системы крови. Более чем 99% от общего запаса кальция в организме находится в костной ткани. У взрослого человека количество кальция составляет около одного килограмма. Благодаря кальцию костная ткань становится твердой и прочной. В крови всегда находится определенное количество кальция, ведь в организме постоянно происходит его потеря с ногтями, волосами, кровью, отшелушившимися клетками кожи, через желудочно-кишечный тракт и почки.

В костной системе паратгормон повышает выход из кости легко растворяющейся части кальция. Костная основа под воздействием паратгормона подвергается рассасыванию, и ионы кальция высвобождаются в кровь. Паратгормон уменьшает отложение кальция в хрусталике глаза (при нехватке этого гормона возникает катаракта), оказывает косвенное влияние на все кальцийзависимые ферменты, на реакции, формирующие свертывающую систему крови.

В почках паратгормон вызывает усиление выведения фосфатов с мочой и усиливает обратное вса­сывание кальция, уменьшая его выведение с мочой. Кроме этого, паратгормон усиливает выведение из организма натрия и калия и уменьшает выведение магния.

Еще один эффект действия паратгормона в почках – это преобразование витамина Д из неактивной формы в активную. В желудочно-кишечном тракте гормон увеличивает всасывание кальция в тонком кишечнике. Витамин Д в печени и почках превращается в активный гормон, влияющий на количество кальция в костной ткани, тем самым увеличивая костную массу. В почках витамин Д вызывает уменьшение выведения кальция с мочой, а в желудочно-кишечном тракте стимулирует активное всасывание кальция и фосфатов из поступившей пищи.

Обмен кальция в организме регулирует кальцитонин – гормон, вырабатываемый клетками щито­видной железы. Кальцитонин вызывает снижение концентрации кальция в крови, когда она превышает 2,5 ммоль/л. В костной системе кальцитонин препятствует рассасыванию костной ткани и выведению из нее кальция. В почках под воздействием кальцитонина усиливается выведе­ние из организма натрия, хлоридов, кальция и фосфатов. Кроме того, в регуляции обмена кальция участвуют и другие гормоны: коры надпочечников, половые.

Витамин Д участвует в гомеостазе кальция, действуя на кишечник и кости. Он выполняет свою активную функцию в виде метаболита кальцийтриола, образуемого в почках под влиянием паратиреоидного гормона. В кишечнике витамин Д регулирует всасывание кальция и фосфата. В костях он имеет особое значение для минерализации вновь образующейся ткани. Витамин Д имеет также значение для регуляции обмена веществ в костной ткани, что является основой его эффекта при остеопорозе. По-видимому, он участвует также в росте клеток и их дифференциации, т.к. рецепторы витамина Д были обнаружены во многих клетках млекопитающих, включая опухолевые клетки.

К витаминам группы D относятся:

витамин D2 — эргокальциферол; выделен из дрожжей, его провитамином является эргостерин;

витамин D3 — холекальциферол; выделен из тканей животных, его провитамин — 7-дегидрохолестерин;

витамин D4 — 22, 23-дигидро-эргокальциферол;

витамин D5 — 24-этилхолекальциферол (ситокальциферол); выделен из масел пшеницы;

витамин D6 — 22-дигидроэтилкальциферол (стигма-кальциферол).

Сегодня витамином D называют два витамина — D2 и D3 — эргокальциферол и холекальциферол — это кристаллы без цвета и запаха, устойчивые в воздействию высоких температур. Эти витамины являются жирорастворимыми, т.е. растворяются в жирах и органических соединениях и нерастворимы в воде.

Значение витамина Д в организме. Его активные метаболиты (например, кальцитриол) усиливают всасывание в кишечнике кальция и других элементов. Транспорт кальция через клетки кишечника является активным процессом, одновременно усиливается всасывание фосфора. В точках роста костей кальций вступает в связь с неорганическими фосфатами. Остеобласты используют фосфат кальция для новообразования костной ткани. В растущей кости новый хрящ образуется в эпифизах, тогда как в диафизарных концах хряща он дегенерирует. Именно здесь имеется потребность в фосфате кальция. Когда хрящ исчезает, эпифиз и диафиз сливаются.

В отсутствие витамина Д нормальная кальцификация не происходит. Кальцификация в периосте также нарушается. Эпифизы увеличиваются, кости размягчаются, и возможно развитие тетании в результате недостатка ионизированного кальция в плазме. Ранним признаком дефицита витамина Д является повышение активности сывороточной щелочной фосфатазы. Этот фермент образуется остеобластами в остеоидной ткани. Витамин помогает задержке кальция и фосфатов путем усиления реабсорбции в проксимальных канальцах почек. Возможно, что темная окраска кожи человека в экваториальных странах имеет значение для уменьшения синтеза избыточного количества витамина Д. В то же время лица с темной кожей, по-видимому, больше страдают от рахита, если в диете недостаточно витамина Д, чем в странах с умеренным климатом. Концентрация ионизированного кальция в крови регулирует секрецию паратгормона. Низкий уровень кальция обусловливает повышение паратгормона и, следовательно, увеличивает продукцию 1,25-дигидроксивитамина Д3. Это увеличивает всасывание кальция и фосфора в кишечнике. Паратгормон действует на кость, увеличивая скорость резорбции кальция и фосфора, особенно в старых участках, где остеобласты и остеоциты активизированы, а синтез коллагена заторможен. В почках паратгормон увеличивает реабсорбцию кальция в канальцах и повышает экскрецию почками неорганического фосфата на всех участках канальцев.

Животные источники:яичный желток, сливочное масло, сыр, рыбий жир, икра, молочные продукты

Однако на практике молоко и молочные продукты далеко не всегда содержат витамин D или содержит лишь следовые (незначительные) количества (например, 100 г коровьего молока содержит всего 0,05 мг витамина D), поэтому их потребление, к сожалению, не может гарантировать покрытие нашей потребности в этом витамине. Кроме того, в молоке содержится большое количество фосфора, который препятствует усвоению витамина D.

Растительные источники: люцерна, хвощ, крапива, петрушка

Синтез в организме: холекальциферол образуется в коже под воздействием ультрафиолетовых лучей солнечного света

При условии, что организм получает достаточное количество ультрафиолетового излучения, потребность в витамине D компенсируется полностью. Однако количество витамина D, синтезируемого под действием солнечного света, зависит от таких факторов как:

Дата добавления: 2014-01-07 ; Просмотров: 948 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Кальцитонин — пептидный гормон щитовидной железы, состоящий из 32 аминокислот. Он получил свое название благодаря способности снижать концентрацию кальция в крови. Секретируется парафолликулярными С-клетками.

Кальцитонин — это главный антагонист паратиреодиного гормона, основным механизмом действия которого является торможение остеокластической костной резорбции. Уровень кальцитонина в крови резко повышается при подозрении на медуллярный рак щитовидной железы. Однако не существует костных заболеваний, в генезе которых нарушения секреции кальцитонина играло бы исключительную роль. И хотя у женщин наблюдаются более низкие уровни кальцитонина, чем у мужчин, данные о снижении секреции этого гормона в формировании первичного остеопороза остаются противоречивыми. Зато доказано, что у больных с высоким уровнем костного обмена кальцитонин вызывает временную гипокальциемию и гипофосфатемию.

Паратгормон

человек имеет 2 пары околощитовидных желез, расположенных на задней поверхности или погруженных внутри щитовидной железы.

главные, или оксифильные, клетки этих желез вырабатывают паратгормон, или паратирин, или паратиреоидный гормон (ПТГ).

•паратгормон регулирует обмен кальция в организме и поддерживаетего уровень в крови.

•в костной ткани паратгормон усиливает функцию остеокластов, что приводит к деминерализации кости и повышению содержания кальция в плазме крови (гиперкальциемия).

•в почках паратгормон усиливает реабсорбцию кальция.

•в кишечнике повышение реабсорбции кальция происходит благодаря стимулирующему действию паратгормона на синтез кальцитриола –активного метаболита витамина D3.

Паратирин является мощным кальций -регулирующим гормоном, вызывает повышение кальция в крови и его еще называют гиперкальциемическим гормоном

Регуляция секрециипаратирина происходит по обратной связи уровнем ионизированного кальция крови.

•низкая концентрация кальция

•симпатические влияния через бета-адренорецепторы.

Подавляют секрецию паратирина:

•высокий уровень кальция в крови и

•почечный гормон кальцитриол.

•Основные эффекты паратирина проявляются

•со стороны органов-мишеней гормона -костной ткани, почек и желудочно-кишечного тракта.

Читайте также:  Какие витамин с для мужчины качество сперма

•Реализация действия паратирина осуществляется через цАМФ, и повышение уровня этого вторичного посредника в моче является важным диагностическим критерием избыточной секреции.

Эффект паратирина на костную ткань:

Обусловлен стимуляцией и увеличением количества остеокластов, резорбирующих кость.

Под влиянием паратирина в костной ткани из-за нарушения цикла Кребса накапливаются лимонная и молочная кислоты, вызывающие местный ацидоз. Кислая реакция среды в костной ткани тормозит активность щелочной фосфатазы —фермента, необходимого для образования основного минерального вещества кости —фосфорнокислого кальция. Избыток лимонной и молочной кислот ведет к образованию растворимых в воде солей кальция —цитрата и лактата, вымыванию их в кровь, что приводит к деминерализации кости. Избыток цитрата выводится с мочой, что является важным диагностическим признаком повышенного уровня паратирина.

В почках гормон снижает реабсорбцию кальция в проксимальных канальцах, но резко усиливает ее в дистальных канальцах, что предотвращает потери кальция с мочой и способствует гиперкальциемии. Реабсорбция фосфата в почках под влиянием паратирина угнетается, это приводит к фосфатурии и снижению содержания фосфата в крови —гипофосфатемии.

Повышенная секреция паратирина при гиперплазии или аденоме околощитовидных желез сопровождается

деминерализацией скелета с деформацией длинных трубчатых костей,

•образованием почечных камней,

•нарушениями памяти и концентрации внимания.

•Дефицит паратирина, особенно при ошибочном оперативном удалении или повреждении желез,

•повышает нервно-мышечную возбудимость вплоть до судорожных приступов, получивших название тетании.

Кальцитриол

активная форма витамина D животных стероидной природы. Работает как сигнальная молекула. Регулирует обмен фосфата и кальция в организме.

Кальцитриол контролирует обмен кальция. В клетках кишечника он индуцирует синтез Са2±переносящих белков, которые обеспечивают всасывание ионов кальция и фосфатов из полости кишечника в эпителиальную клетку кишечника и далее транспорт из клетки в кровь против концентрационного градиента на мембранах кишечника. В почках кальцитриол стимулирует реабсорбцию ионов кальция и фосфатов. При низкой концентрации ионов кальция кальцитриол способствует мобилизации кальция из костной ткани.

Дата добавления: 2015-11-05 ; просмотров: 6120 | Нарушение авторских прав

источник

Основы физиологии кальциево-фосфорного гомеостаза. Кальций и фосфаты – основные минеральные составляющие костной ткани, являются наиболее важными минеральными компонентами, необходимыми для функционирования клеток. Организм человека содержит около 1000 г кальция. 99% кальция содержится в костной ткани в форме гидроксиаппатитов [Са10(РО4)6(ОН)2Н2О], который представляют собой трудномобилизуемую форму кальция и фосфата кальция (около 1% всего костного кальция), который легко мобилизуется и служит для поддержания постоянной концентрации ионов кальция в крови. Оставшийся 1% ионов кальция содержится в мягких тканях и внеклеточном пространстве (в том числе плазме крови).

Нормальный уровень ионов кальция составляет 2,21-2,76 ммоль/л, из которых около 50% кальция – это свободный, ионизированный или биологически активный кальций, а остальная часть либо связана с белками крови (около 45%), либо анионами органических кислот – лимонной и молочной (5%).

Ионизированный кальций выполняет в организме ряд важных биологических функций:

Играет ведущую роль в процессе минерализации костной ткани;

Регулирует возбудимость и сократимость мышечной ткани, обеспечивает процесс выделения медиатора в синапсах нервной системы;

Обеспечивает сократительную функцию миокарда;

Участвует в регуляции тонуса стенки кровеносных сосудов и поддержании уровня АД;

Стимулирует продукцию пищеварительных ферментов и их секрецию;

Снижает проницаемость клеточных мембран;

Участвует в биосинтезе альдостерона и поддержании КЩР;

Участвует в свертывании крови (IV фактор свертывающей системы).

В организме человека содержится около 600-1000 г фосфора. Из них 85% депонировано в скелете и 15% в мягких тканях и внеклеточной жидкости. Нормальный уровень фосфатов в крови составляет 0,64-1,29 ммоль/л. Из них 10% связано с белками крови и около 90% находится в виде свободных фосфат-ионов. Биологическая роль фосфатов заключается в следующем:

Обеспечение синтеза макроэргических соединений (АТФ, креатинфосфата, фосфоенолпирувата и др.);

Синтезе и регуляции активности ферментов клетки (путем их фосфорилирования-дефосфорилирования);

Регуляции КЩР крови (фосфатный буфер).

Фосфаты и кальций поступают в организм из кишечника. В среднем за сутки с пищей поступает 600-1000 мг кальция из которых абсорбируется только 10-12,5%. Абсорбция кальция протекает путем облегченного транспорта, за счет особых Са-связывающих белков, которые переносят ионы кальция из просвета кишечника через его эпителий в кровь. Обычная диета содержит такое же количество фосфатов, что и кальция. Однако, абсорбция фосфатов более полная (от 70 до 90%) и протекает путем фильтрации (водной диффузии).

Главным депо кальция и фосфатов в организме является костная ткань, которая состоит из клеточных элементов, межклеточного вещества (органической основы кости или оссеина) и минеральных веществ.

Межклеточное вещество (оссеин) на 85-90% состоит из коллагена, окруженного кристаллами гидроксиаппатита и скрепленного неколлагеновыми белками, которые составляют 10-15% костной ткани. Различают 4 группы неколлагеновых белков:

гликозаминогликаны (хондроитин-сульфат, кератан-сульфат и дерматан-сульфат);

белки межклеточного взаимодействия (тромбоспондин, сиалопротеин, остеопонтин, фибронектин);

ростовые факторы (интерлейкины, фактор некроза опухоли, трансформирующие факторы роста и др.).

Клеточные элементы костной ткани представлены:

Остеобластами – клетками, которые продуцируют коллаген и неколлагеновые белки, обеспечивают органификацию кальция и рост костной ткани. Они лежат в поверхностных слоях костной ткани.

Остеокластами – клетками, расположенными в толще костной ткани, которые секретируют кислую фосфатазу и лизосомальные ферменты. Благодаря этим ферментам гидроксиаппатиты переходят в легкорастворимые фосфаты, способствуя разрушению костной ткани.

Остеоциты – клетки, которые участвуют в окончательном формировании новой и резорбции старой костной ткани, расположены вокруг костных каналов.

На схеме 1 показана регуляция образования и резорбции костной ткани.

Схема 1. Регуляция синтеза и распада костной ткани. ОБ – остеобласты, ОК — остеокласты. Зеленым цветом на схеме показаны факторы, которые способствуют повышению процессов синтеза костной ткани, красным – ее резорбции. ПТГ – паратиреоидный гормон, IGF – инсулиноподобный фактор роста, СТГ – соматотропный гормон, ГКС — глюкокортикостероиды, TGF – трансформирующий фактор роста, IL – интерлейкины, TNF – фактор некроза опухоли, -ИФ – -интерферон. ODF osteoclast differentiation factor (остеокласт стимулирующий фактор, фактор дифференцировки остеокластов), OPG osteoprotegerin (остеопротегерин, остеокласт-ингибирующий фактор).

После того, как в процессе внутриутробного развития и первых лет жизни сформируется костная ткань, она начинает непрерывно, в течение всей жизни человека, подвергаться ремоделированию (перестройке, направленной на оптимизацию структуры ткани). Процесс ремоделирования заключается в том, что в участках минимальных нагрузок костная ткань подвергается резорбции, а в тех участках, где нагрузки велики – синтезу и минерализации. Тонкая координация этих процессов обусловлена взаимодействием между остеобластами и остеокластами.

Остеобласты синтезируют интерлейкины-1 и –6, которые активируют клетки предшественницы остеокластов, кроме того, остеобласты выделяют особые факторы — остеокластстимулирующий и остеокласт-ингибирующий факторы. Остеокласт-стимулирующий фактор или фактор дифференциации остеокластов (ODF) действует на особые RANK-рецепторы на поверхности остеокластов и активирует особый белок – нуклеофактор В, который повышает активность генома остеокластов и запускает процессы резорбции ткани. Остеокласт-ингибирующий фактор или белок остеопротегерин (OPG) является своеобразной «ловушкой» для ODF. Он связывает молекулы ODF в неактивные комплексы, не позволяя им действовать на RANK-рецепторы и стимулировать остеокласты. Таким образом, остеобласты, изменяя баланс ODF/OPG, регулируют активность остеокластов и скорость резорбции ими костной ткани.

Выделение кальция и фосфатов в организме осуществляется путем почечной экскреции, при этом обычно более 95% фильтрующегося в почках кальция и 85% фосфатов подвергаются реабсорбции.

Классификация лекарственных средств, влияющих на процессы обмена кальция и фосфатов.

Стимуляторы синтеза и минерализации

ксеногенные: миакальцик, кальцитрин.

Препараты фторидов: натрий фтористый.

Средства, влияющие на процессы резорбции и минерализации.

Аналоги паратиреоидного гормона: паратиреоидин, терипаратид.

Аналоги витамина D2: эргокальциферол;

Аналоги витамина D3: холекальциферол, кальцитриол.

Оссеин-гидроксиаппатитный комплекс: остеогенон.

Препараты кальция: кальция хлорид, кальция лактат, кальция цитрат.

Аналоги паратиреоидного гормона.

Паратиреоидин (Parathyreoidinum, Parathormon). Гормональный препарат, получаемый из паращитовидных желез крупного рогатого скота. Содержит паратгормон.

Паратиреоидный гормон (паратгормон) – одноцепочечный полипептид из 84 аминокислот. Вырабатывается в паращитовидной железе в виде препропаратгормона. В процессе упакови в везикулы от него отщепляется вначале сигнальный пептид из 25 аминокислот, а затем, от получившегося прогормона отсоединяется гептапептид, освобождая паратгормон. Биологическая активность паратгормона обусловлена его N-концевым участком 1-34 аминокислот. Удаление даже первых 2 аминокислот с N-конца молекулы приводит к потере большей части активности гормона.

Регулирует секрецию гормона кальциевый рецептор, который расположен на поверхности клеток паращитовидных желез. При нормальном содержании кальция в плазме крови рецептор активируется ионами кальция и через Gi-белок понижает активность аденилатциклазы. Если концентрация ионов кальция в плазме понижается, то рецептор перестает активироваться и торможения аденилатциклазы не происходит. В итоге, в клетке повышается активность аденилатциклазы и уровень цАМФ, который активирует зависимые от него протеинкиназы. Каталитические субъединицы протеинкиназ стимулируют секрецию уже предобразованного паратгормона из внутриклеточных депо, а рецепторная субъединица протеинкиназы совместно с цАМФ поступает в ядро клетки, где активирует экспрессию генов, отвечающих за синтез паратгормона.

Помимо кальциевого рецептора на поверхности и в цитоплазме клеток паращитовидных желез лежат и другие рецепторы, влияющие на синтез и секрецию гормона: 2-адренорецепторы и глюкокортикоидные рецепторы усиливают секрецию этого гормона, рецепторы кальцитриола (активной формы витамина D) – тормозят синтез паратгормона.

МД: паратгормон связывается со специфическими рецепторами на поверхности клеток-мишеней, которые через Gs-белки передают сигнал на аденилатциклазу, повышая ее активность. В итоге, в цитоплазме клетки увеличивается уровень цАМФ, который стимулирует зависимые от него протеинкиназы и активирует тем самым ряд ферментов цитоплазмы клетки и транскрипцию генов ее ядра. Клетками-мишенями для паратгормона являются клетки костной ткани и почек.

Костная ткань. Рецепторы к паратгормону располагаются на поверхности остеобластов. Активация этих рецепторов вызывает:

Снижение синтеза остеобластами коллагена I типа (основной коллаген кости);

Усиление синтеза ODF, который способствует превращению предшественников остеокластов в зрелые остеокласты, увеличивает синтез остеокластами коллагеназы (расщепляет коллаген) и кислой фосфатазы (повышает растворимость гидроксиаппатитов);

Снижению активности ферментов ЦТК и накоплению лимонной кислоты, что приводит к ацидозу и дополнительному усилению растворимости гидроксиаппатита;

В низких дозах и при пульсирующем режиме введения усиливает действие инсулиноподобного фактора роста I на костную и хрящевую ткань, что оказывает на остеобласты противоположной действие – увеличивает синтез коллагена и минерализацию костной ткани.

Схема 2. Влияние паратгормона на процессы синтеза и распада костной ткани. ОБ — остеобласты, ОК – остеокласты, ПТГ – паратгормон, ODF – фактор дифференцировки остеокластов (остеокластстимулирующий фактор). ПТГ опосредовано через остеобласты вызывает активацию остеокластов и распад костной ткани.

Увеличивается синтез кальций-переносящего белка и реабсорбция ионов кальция и магния в канальцах нефрона (их выведение при этом падает);

Снижает реабсорбцию фосфатов, сульфатов, хлоридов и гидрокарбонатов, увеличивая их потери;

Активирует гидроксилазы почек – ферменты, которые необходимы для образования активной формы витамина D – кальцитриола.

ФЭ: Паратгормон увеличивает концентрацию ионов кальция и магния в плазме крови, снижает в ней уровень фосфатов (в меньшей степени хлоридов и гидрокарбонатов, вызывая ацидоз).

В высоких дозах паратгормон стимулирует процессы резорбции костной ткани, но в низких дозах и пульсирующем режиме введения способствует синтезу коллагена и минерализации костной ткани.

Применение: В настоящее время в медицинской практике паратиреоидин не применяется. Ранее он предлагался для лечения гипопаратиреоидизма (недостаточности гормональной функции паращитовидных желез), однако, он был достаточно аллергогенным и уже через несколько недель лечения к нему формировались антитела, оказывающие нейтрализующее действие и снижающие эффективность терапии.

Схема 3. Изменение обмена кальция под влиянием гормонов и витамина D. Слева вверху представлен нормальный обмен кальция: процессы удаления кальция из крови (зеленые стрелки) уравновешивают процессы его выхода в кровь (красные стрелки). Действие паратгормона (справа вверху): процессы реабсорбции кальция в кровь из почек и вымывания из костей преобладают над процессами удаления. Действие кальцитонина (слева внизу): процессы удаления кальция через ЖКТ и почки, а также путем депонирования в костной ткани преобладают над процессами его выхода в кровь. Действие витамина D (справа внизу): процессы абсорбции кальция из ЖКТ и реабсорбции из мочи преобладают над процессами депонирования кальция в костной ткани.

Терипаратид (Teriparatid, Forteo). Синтетический пептид из 34 аминокислот, воспроизводящий N-концевой фрагмент паратгормона. По механизму действия и основным эффектам идентичен паратгормону, но имеет минимум иммуногенных свойств.

Применение: Предложен для введения в пульсирующем режиме малыми дозами (20-40 мкг/сут) при лечении остеопороза у женщин. При таком режиме введения он повышает активность остеобластов, снижает активность остеокластов, в итоге скорость потери костной ткани уменьшается, а ее синтез возрастает.

В настоящее время препарат прошел доклинические испытания, а также I и II фазы клинических испытаний, завершается III фаза. В данное время терипаратид следует признать самым эффективным средством для лечения остеопороза: он снижает на 70% риск переломов трубчатых костей и на 77-86% риск множественных переломов. Эффективность всех других известных средств не превышает 50%.

НЭ: В одном из исследований было показано, что терипаратид оказывал канцерогенный эффект у крыс, вызывая опухоли костей. Однако, нет прямых указаний, что бластоматозный рост связан с лечением данным препаратом, кроме того, для проведения исследования были использованы дозы в 100 раз превышающие рекомендуемые.

Витамин D (Vitamin D). В настоящее время известно 7 естественных веществ, обладающих витамин-D активностью (т.н. секостероиды). Основными формами витамина D являются эргокальциферол (витамин D2) и холекальциферол (витамин D3). Субстанция, исторически описанная в виде витамина D1, как оказалось, представляет собой смесь витаминов D2 и D3.

Схема 4. Метаболизм витамина D в организме. В левой верхней панели представлен синтез витамина D3в коже человека, в правой верхней панели – образование витамина D2в организме растений. Красным цветом показаны гидроксильные группы, которые вводятся в молекулу витамина при его активации.

Витамин D2 содержится в продуктах растительного происхождения, грибах, яичном желтке, сливочном масле, молоке, икре. Витамин D3 поступает в организм человека с продуктами животного происхождения (печень, рыбий жир, желток яиц), а также способен синтезироваться в коже человека под влиянием ультрафиолетового света (=290-315 нм) из продукта дегидрирования холестерина – 7-дегидрохолестерина (см. схему 4). Всего на 1 см 2 кожи за сутки образуется 1-2 МЕ витамина D3. Сами по себе витамины группы D неактивны, их активация происходит в организме.

ФК: Всасывание витамина D, поступающего с пищей, происходит в дистальном отделе тонкой кишки. Биоусвоение витамина D составляет 60-90%, но при недостатке желчи может снижаться практически до нуля. В плазме крови витамин циркулирует в связи с -гликопротеином, который защищает его от инактивации и выведения почками с мочой.

Поступая в печень, витамин D ферментом 25-гидроксилазой переводится в основную транспортную форму витамина – 25-гидроксивитамин D (кальцидиол). В последующем кальцидиол поступает в почки, где из него под влиянием 1-гидроксилазы образуется активная форма 1,25-дигидроксивитамин D (кальцитриол). Фармакологическая активность кальцитриола в 100-1000 раз выше, чем активность кальцидиола. Часть кальцидиола в почках ферментом 24-гидроксилазой переводится в 24,25-дигидрокси­витамин D (кальцифедиол). Ранее эту форму витамина D считали фармакологически инертной, но в последнее время было установлено, что эта форма витамина способна вызывать некоторые из эффектов, присущие кальцитриолу.

Активность фермента 1-гидроксилазы находится под контролем ряда факторов, отдельные из которых приведены в таблице 1.

Таблица 1. Факторы, влияющие на активность 1-гидроксилазы почек.

источник