Меню Рубрики

В какой кофермент входит витамин а

Коферменты в каталитических реакциях осуществляют транспорт различных групп атомов, электронов или протонов. Коферменты связываются с ферментами:

— гидрофобными взаимодействиями и т.д.

Один кофермент может быть коферментом для нескольких ферментов. Многие коферменты являются полифункциональными (например, НАД, ПФ). В зависимости от апофермента зависит специфичность холофермента.

Все коферменты делят на две большие группы: витаминные и невитаминные.

Коферменты витаминной природы– производные витаминов или химические модификации витаминов.

1 группа: тиаминовыепроизводные витамина В1. Сюда относят:

— тиаминдифосфат (ТДФ) или тиаминпирофосфат (ТПФ) или кокарбоксилаза;

ТПФ имеет наибольшее биологическое значение. Входит в состав декарбоксилазы кетокислот: ПВК, a-кетоглутаровая кислота. Этот фермент катализирует отщепление СО2.

Кокарбоксилаза участвует в транскетолазной реакции из пентозофосфатного цикла.

2 группа: флавиновые коферменты, производные витамина В2. Сюда относят:

Ребитол и изоалоксазин образуют витамин В2. Витамин В2 и остаток фосфорной к-ты образуют ФМН. ФМН в соединении с АМФ образуют ФАД.

[рис. изоалоксазиновое кольцо соединено с ребитолом, ребитол с фосфорной к-той, а фосфорная к-та – с АМФ]

ФАД и ФМН являются коферментами дегидрогеназ. Эти ферменты катализируют отщепление от субстрата водорода, т.е. участвуют в реакциях окисления–восстановления. Например СДГ – сукцинатдегидрогеназа – катализирует превращение янтарной к-ты в фумаровую. Это ФАД-зависимый фермент. [рис. COOH-CH2-CH2-COOH® (над стрелкой – СДГ, под – ФАД и ФАДН2) COOH-CH=CH-COOH]. Флавиновые ферменты (флавинзависимые ДГ) содержат ФАД, который в них является первоисточником протонов и электронов. В процессе хим. реакций ФАД превращается в ФАДН2. Рабочей частью ФАД является 2 кольцо изоалоксазина; в процессе хим. реакции идет присоединение двух атомов водорода к азотам и перегруппировка двойных связей в кольцах.

3 группа: пантотеновые коферменты, производные витамина В3 – пантотеновой кислоты. Входят в состав кофермента А, НS-КоА. Этот кофермент А является коферментом ацилтрансфераз, вместе с которой переносит различные группировки с одной молекулы на другую.

4 группа: никотинамидные, производные витамина РР — никотинамида:

Коферменты НАД и НАДФ являются коферментами дегидрогеназ (НАДФ-зависимых ферментов), например малатДГ, изоцитратДГ, лактатДГ. Участвуют в процессах дегидрирования и в окислительно-восстановительных реакциях. При этом НАД присоединяет два протона и два электрона, и образуется НАДН2.

Рис. рабочей группы НАД и НАДФ: рисунок витамина РР, к которому присоединяется один атом Н и в результате происходит перегруппировка двойных связей. Рисуется новая конфигурация витамина РР + Н + ]

5 группа: пиридоксиновые, производные витамина В6. [рис. пиридоксаля. Пиридоксаль+ фосфорная к-та= пиридоксальфосфат]

Эти формы взаимопревращаются в процессе реакций. При взаимодействии пиридоксаля с фосфорной кислотой получается пиридоксальфосфат (ПФ).

ПФ является коферментом аминотрансфераз, осуществляет перенос аминогруппы от АК на кетокислоту – реакция переаминирования. Также производные витамина В6 входят как коферменты в состав декарбоксилаз АК.

Коферменты невитаминной природы – вещества, которые образуются в процессе метаболизма.

1) Нуклеотиды – УТФ, УДФ, ТТФ и т.д. УДФ-глюкоза вступает в синтез гликогена. УДФ-гиалуроновая к-та используется для обезвреживания различных веществ в трансверных реакциях (глюкоуронил трансфераза).

2) Производные порфирина (гем): каталаза, пероксидаза, цитохромы и т.д.

3) Пептиды. Глутатион – это трипептид (ГЛУ-ЦИС-ГЛИ), он участвует в о-в реакциях, является коферментом оксидоредуктаз (глутатионпероксидаза, глутатионредуктаза). 2GSH«(над стрелкой 2Н) G-S-S-G. GSH является восстановленной формой глутатиона, а G-S-S-G – окисленной.

4) Ионы металлов, например Zn 2+ входит в состав фермента АлДГ (алкогольдегидрогеназы), Cu 2+ — амилазы, Mg 2+ — АТФ-азы (например, миозиновой АТФ-азы).

-присоединении субстратного комплекса фермента;

-стабилизация оптимальной конформации активного центра фермента;

-стабилизация четвертичной структуры.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10357 — | 7870 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Ферменты – это биологические катализаторы. По химической природе ферменты являются белками.

Отличие ферментов от небиологических катализаторов (железо, платина и т.д.) заключается в следующем:

· скорость ферментативных реакций выше, чем реакций, катализируемых небелковыми катализаторами.

· ферменты обладают высокой специфичностью

· ферменты катализируют реакции в»мягких» условиях, т.е. при нормальном атмосферном давлении, физиологическом значении pH и температуре тела

· скорость ферментативного катализа может регулироваться

Вещество, которое превращаетсяпод действием фермента, называется «субстрат».

Структурно-функциональная организация ферментов

Так как по химической природе ферменты являются белками, то для них характерны все особенности структурной организации белков. Большинство ферментов имеют четвертичную структуру и являются сложными белками. Они состоят из белка – апофермента и кофактора. В роли кофакторов выступают ионы металлов или коферменты. Коферменты – это небольшие органические молекулы, которые принято разделять на 2 большие группы: витаминные и невитаминные. Исходными веществами для образования витаминных коферментов являются витамины. Поэтому недостаточное поступление их с пищей приводит к снижению синтеза этих коферментов и нарушению функционирования соответствующих ферментов. Невитаминные коферменты образуются в организме из промежуточных продуктов обмена веществ. Поэтому недостатка этих коферментов в физиологических условиях не бывает.

Классификация коферментов

I. Витаминные коферменты

1. Тиаминовые коферменты (производные витамина В1). ТМФ, ТДФ, ТТФ (тиаминмонофосфат, тиаминдифосфат и тиаминтрифосфат).

2. Флавиновые коферменты (производные витамина В2). ФМН (флавинмононуклетид), ФАД (флавинадениндинуклеотид)

3. Пантотеновые коферменты (производные витамина В3). КоА (кофермент А).

4. Никотинамидные коферменты (производные витамина В5) НАД (никотинамидадениндинуклеотид), НАДФ (никотинамидадениннуклеотидфосфат).

5. Пиридоксиновые коферменты (производные витамина В6). ПАЛФ (пиридоксальфосфат), ПАМФ (пиридоксаминфосфат).

6. Фолиевые коферменты (производные витамина В9). ТГФК (тетрагидрофолиевая кислота).

7. Биотиновые коферменты (производные витамина Н). Карбоксибиотин.

8. Кобамидные коферменты (производные витамина В12). Метилкобаламин, дезоксиаденозилкобаламин.

9. Липоевые коферменты (производные витамина N). Амид липоевой кислоты.

10. Хиноновые коферменты. Убихинон или кофермент Q.

11. Карнитиновые коферменты (производные витамина Вт). Карнитин.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9310 — | 7287 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

В современной медицине, помимо витаминов, применяются также некоторые их производные (коферменты). Установлено, что в роли биокатализаторов чаще всего выступают производные витаминов — коферменты.

Коферменты (коэнзимы) — органические соединения небелковой природы, которые необходимы для функционирования многих ферментов.

Коферменты непосредственно являются катализаторами, функционируя в качестве переносчика электронов, атомов или групп атомов. Чаще всего часть структуры кофермента состоит из того или иного витамина, органического вещества, которое не синтезируется в организме человека и должно доставляться ему в составе пищи. В молекуле кофермента активной частью, соединяющейся с переносимой группой, служит именно витамин.

Тяжёлые заболевания, связанные с недостатком витаминов в пище, являются следствием нарушения обмена веществ в результате снижения концентрации коферментов, участвующих в специфических реакциях с ферментами.

Коферменты играют роль активного центра молекулы фермента.

Есть две группы коферментов:

Для витаминных коферментов исходными веществами являются витамины, поэтому недостаточное поступление их с пищей приводит к снижению синтеза этих коферментов и нарушению в работе соответствующих ферментов.

Невитаминные коферменты образуются в организме из промежуточных продуктов обмена веществ, поэтому недостатка в организме этих коферментов не бывает.

  1. Витаминные коферменты подразделяются на:

— тиаминовые коферменты (производные витамина В1);

— флавиновые коферменты (производные витамина В2);

— пантотеновые коферменты (производные витамина В3);

— пиридоксиновые коферменты (производные витамина В6);

— фолиевые коферменты (производные витамина В9);

— биотиновые коферменты (производные витамина Н);

— кобамидные коферменты (производные витамина В12);

— липоевие коферменты (производные витамина N);

— хиноновые коферменты. Убихинон или коэнзим Q10;

— карнитиновые коферменты (производные витамина Вт). Карнитин.

  1. Невитаминные коферменты также делятся на несколько групп:

Изучение действия коферментов показало, что они, обладая низкой токсичностью, имеют широкий спектр действия на организм. Применение коферментов в спортивной фармакологии:

— кокарбоксилаза (коферментная форма тиамина — витамин В1),

— пиридоксальфосфат (витамин В6),

Группа препаратов, созданных на основе производных витаминов, представлена:

— пиридитолом (производное пиридоксина), он имеет мягкий стимулирующий эффект на ткани головного мозга,

— пантогамом (гомолог пантотеновой кислоты, содержащий гаммааминомасляную кислоту),

— оксикобаламином (метаболит витамина В12).

Кокарбоксилаза — кофермент, образующийся в организме человека из поступающего извне тиамина. В спортивной медицине применяется для лечения перенапряжения миокарда и нервной системы, при печёночном синдроме, невритах и радикулитах. Эффект даёт только внутривенное введение в дозе не менее 100 мг.

Кобамамид — обладает всеми свойствами витамина В12 и анаболической активностью. В спортивной медицине применяется для тех же целей, что и витамин В12, а также при перенапряжении миокарда, печёночном синдроме. Способствует увеличению массы скелетных мышц при интенсивных физических нагрузках, улучшению скоростно-силовых показателей и ускорению восстановительных процессов после интенсивных физических нагрузок. Целесообразно сочетание кобамамида с карнитином, с препаратами аминокислот и продуктами повышенной биологической ценности. Рекомендуется прием 2-3 таблеток ежедневно или внутримышечное введение 1000 мкг препарата в день, не менее 20 дней.

Оксикобаламин — является метаболитом цианкобаламина (витамин В12). По фармакологическому действию близок витамину В12, но по сравнению с ним быстрее превращается в организме в активную коферментную форму и дольше сохраняется в крови, так как более прочно связывается с белками плазмы и медленнее выделяется с мочой. Показания к применению такие же, как для В12.

Пиридоксальфосфат — является коферментной формой витамина В6 (пиридоксина). Препарат обладает свойствами витамина В6. Отличается тем, что оказывает быстрый терапевтический эффект, может приниматься в случаях, когда нарушено фосфорилирование пиридоксина. Рекомендуется по 0,02 г 3 раза в день через 15 мин. после еды курсом 10-30 дней. Также источником коферментной формы витамина В6 является спортивное питание «Леветон Форте».

Пиридитол, энцефабол (пиритинол) — фармакологический препарат, проявляет элементы психотропной активности, свойственной антидепрессантам, с седативным действием. Активирует метаболические процессы в ЦНС, способствует ускорению проникновения глюкозы через гематоэнцефалический барьер, снижает избыточное образование молочной кислоты, повышает устойчивость тканей к гипоксии. Малотоксичен, не обладает В6-витаминной активностью. Применяют по 0,1 г 3 раза в день через 15-30 мин. после еды не менее 4 недель. Не рекомендуется принимать в вечерние часы.

Пантогам (гомолог пантотеновой кислоты, содержащий гаммааминомасляную кислоту) — улучшает обменные процессы, повышает устойчивость к гипоксии, уменьшает реакции на болевые раздражения. Активизирует умственную деятельность и физическую работоспособность. В составе комплексной терапии применяют при черепно-мозговой травме. Рекомендуется по 0,5 г 2-3 раза в день через 15-30 мин. после еды. Приём не менее 4 недель.

Карнитин — витаминоподобное вещество, частично поступающее с пищей, частично синтезируемое в организме человека. Способствует окислению жирных кислот, синтезу аминокислот и нуклеиновых кислот. В спортивной медицине рекомендован для повышения работоспособности в видах спорта с преимущественным проявлением выносливости для ускорения течения процессов восстановления. В скоростно-силовых видах спорта оказывает стимулирующее действие на рост мышц. Выпускается как L-карнитин («Элькар», «Карнифит»).

Флавинат — кофермент, который образуется в организме из рибофлавина путём фосфорилирования при участии АМФ. Лекарственная форма получена синтетическим путём. Флавинат применяют при отсутствии эффекта от применения витамина В2. Применяют также при хронических заболеваниях печени, желудочно-кишечного тракта, кожных заболеваниях. Препарат вводят в мышцу медленно.

Липоевая кислота — положительно влияет на углеводный обмен. Ускоряет окисление углеводов и жирных кислот, способствует повышению энергетического потенциала.

Что касается коэнзима Q10, пожалуй, самого известного из коферментов, окончательный вердикт о его пользе для атлетов ещё не вынесен.

По результатам исследований было выявлено, что у людей, не занимающихся спортом, коэнзим Q10 может улучшать качество аэробных упражнений. В то же время у опытных спортсменов, принимавших по 100 мг коэнзима Q10 на протяжении четырёх недель, никаких изменений в уровне выносливости обнаружено не было.

Важно отметить, что коэнзим Q10 в больших дозах (больше 120 мг) может быть вреден, приводит к повреждению мышечной ткани.

источник

Коферменты представляют собой органические соединения небелковой природы, которые необходимы для функционирования многих ферментов. Большинство из них являются производными витаминов.

Причиной нарушения метаболизма и снижения синтеза полезных веществ в организме часто является снижение активности некоторых видов ферментов. Поэтому то коэнзимы столь нам необходимы.

В узком смысле, кофермент – это коэнзим Q10, производная фолиевой кислоты и некоторых других витаминов. Важное значение для организма человека имеют те коферменты, которые продуцируются витаминами группы B.

Кофермент нужен для того, чтобы повысить производительность клеточной энергии, которая нужна для поддержания жизнедеятельности. Любой процесс, который протекает в организме человека, требует колоссального энергетического ресурса, будь то умственная деятельность, работа сердечно-сосудистой или пищеварительной системы, физическая активность при нагрузке на опорно-двигательный аппарат. Благодаря реакции, в которую коферменты вступают с ферментами, продуцируется необходимая энергия.

Коферменты представляют собой небелковые соединения, которые способствуют активации потенциала ферментов. Они выполняют 2 основные функции:

  1. Участвуют в каталитических процессах. Кофермент сам по себе не вызывает в организме необходимых молекулярных превращений, в состав ферментов он входит вместе с апоферментом, и только при их взаимодействии происходят каталитические процессы связывания субстрата.
  2. Транспортировочная функция. Кофермент соединяется с субстратом, в результате чего образуется прочный транспортировочный канал, по которому свободно перемещаются молекулы до центра другого фермента.
Читайте также:  Какие витамины пить при сухой коже

Все коферменты объединяет одно важное свойство – они являются термически устойчивыми соединениями, но свойственные им химические реакции довольно сильно разнятся.

По способам взаимодействия с апоферментом коферменты делятся на:

  • Растворимые – во время реакции соединяется с молекулой фермента, после чего изменяется по химическому составу и высвобождается заново.
  • Простетические – прочно связаны с апоферментом, в процессе реакции находится в активном центре фермента. Их регенерация происходит при взаимодействии с другим коферментом или субстратом.

По химической структуре коферменты делятся на три группы:

  • алифатические (глутатион, липоевая кислота и др.)
  • гетероциклические (пиридоксальфосфат, тетрагидрофолиевая кислота, нуклеозидфосфаты и их производные (КоА, ФМН, ФАД, НАД и др.), металлопорфириновые гемы и др.
  • ароматические (убихиноны).

По функциональному признаку выделяют две группы коферментов:

  • окислительно-восстановительные,
  • коферменты переноса групп.

При интенсивных физических нагрузках расходуется большое количество энергии, ее запас в организме истощается, а многие витамины и питательные вещества потребляются гораздо быстрее, чем вырабатываются. Спортсмены испытывают физическую слабость, нервное истощение, нехватку сил. Для того чтобы помочь избежать многих симптомов были разработаны специальные препараты с коферментами в составе. Их спектр действия очень широк, назначаются они не только спортсменам, но и людям с достаточно серьезными заболеваниями.

Кофермент, который образуется только из поступающего в организм тиамина. У спортсменов он служит средством профилактики перенапряжения миокарда, расстройств нервной системы. Препарат назначается при радикулитах, невритах, а также острой печеночной недостаточности. Вводится внутривенно, разовая доза не должна быть менее 100 мг.

Заменяет по действию функционал витамина B12, является анаболиком. Помогает спортсменам нарастить мышечную массу, увеличивает выносливость, способствует быстрому восстановлению после занятий. Выпускается в форме таблеток и растворов для внутривенного введения, суточная норма составляет 3 таблетки или 1000 мкг. Длительность курса – не более 20 дней.

По своему действию схож с витамином B12, но намного дольше держится в крови и гораздо оперативнее преобразуется в коферментную формулу благодаря прочному соединению с плазменными белками.

Для препарата характерны все свойства витамина B6. От него он отличается быстрым терапевтическим эффектом, назначается к приему даже при нарушении фосфорилирования пиридоксина. Принимается три раза в день, суточная доза составляет не более 0,06 гр, а курс – не дольше месяца.

Активизирует метаболические процессы центральной нервной системы, повышает проходимость глюкозы, препятствует избыточному образованию молочной кислоты, повышает защитные свойства тканей, в том числе устойчивость к гипоксии, которая возникает во время интенсивных спортивных тренировок. Принимают препарат три раза в день по 0,1 гр. после завтрака в течение месяца

Является гомологом пантотеновой кислоты, ускоряет обменные процессы, снижает проявление болевых реакций, повышает устойчивость клеток к гипоксии. Действие препарата направлено на активацию работы головного мозга, повышение выносливости, показан к применению при черепно-мозговых травмах различного типа. Таблетки принимаются в течение месяца по 0,5 гр не чаще трех раз в день.

Выпускается в форме препарата для инъекций, действие которых направлено на активацию жирового обмена, ускорение регенерации клеток. Оказывает анаболическое, антигипоксическое и антитиреоидное действие. Является синтетическим заменителем витамина B6. Эффективен в виде внутривенной капельницы.

Образуется в организме из рибофлавина, активно участвует в углеводном, липидном и аминокислотном обмене. Выпускается в виде раствора для внутримышечных инъекций, так как его усвоение в желудке неэффективно при нарушении всасывания рибофлавина.

Нормализует углеводный обмен. Повышает скорость окисления углеводов и жирных кислот, что способствует повышению энергетического запаса.

источник

Ферменты – вещества белковой природы, ускоряющие биохимические реакции в организме.

По строению различают простые и сложные ферменты. Простые ферменты состоят из аминокислот – белковой части. Сложные ферменты состоят из белковой и небелковой частей. Небелковая часть называется кофактором. Кофактор может быть представлен производными витаминов, нуклеотидами, металлами.

В процессе биохимической реакции фермент превращает вещество – субстрат. Субстрат связывается с активным центром фермента при помощи водородных, ионных, гидрофобных связей. Активный центр простого фермента представлен радикалами аминокислот. Активный центр сложного фермента представлен кофактором.

Ферменты с четвертичной структурой имеют аллостерический центр, к которому присоединяются низкомолекулярные вещества, регулирующие активность ферментов.

Витамины – сложные вещества, которые участвуют в биохимических реакциях.

Витамины поступают в организм с пищей, ряд витаминов образуется микрофлорой кишечника в организме. При отсутствии какого-либо витамина в организме развивается авитаминоз по этому витамину. При недостатке какого-либо витамина развивается гиповитаминоз. При избытке какого-либо витамина развивается гипервитаминоз.

Витамины делятся на водорастворимые и жирорастворимые.

Витамин В1 – химическое название: тиамин; биологическое название: антиневритный. Образует кофактор тиаминпирофосфат, который входит в состав ферментов, участвующих в реакциях окисления углеводов с целью получения энергии.

При гиповитаминозе наблюдаются слабость, поражение нервной системы: невриты, которые сопровождаются болями, нарушением чувствительности, раздражительность, в тяжелых случаях наблюдаются парезы, параличи, нарушения психики. Эти симптомы связаны с накоплением в нервной ткани пирувата. В окислении пирувата участвует тиаминпирофосфат. Поэтому при гиповитаминозе по тиамину снижается окисление пирувата, и он накапливается в тканях. При этом наиболее чувствительной к накоплению пирувата является нервная ткань, поэтому при гиповитаминозе по тиамину прежде всего развиваются симптомы со стороны нервной системы. Кроме того, нарушение окисления пирувата ведет к недостатку энергии. Снижение энергии в организме также прежде всего сказывается на состоянии нервной системы.

Источниками тиамина являются прежде всего – неочищенные зерна злаков, молодые проростки злаков, мясо, хлеб.

Химическое название – рибофлавин; биологическое название — витамин роста.

Образует кофакторы – флавинмононуклеотид (ФМН), флавинадениндинуклеотид (ФАД). ФМН и ФАД входят в состав ферментов, которые участвуют в реакциях окисления углеводов, жирных кислот для получения энергии.

При гиповитаминозе наблюдается недостаток энергии в организме, что сопровождается снижением роста, слабостью, поражением нервной системы, сердечно-сосудистой системы, нарушением питания, ломкостью волос, ногтей.

Источники – мясо, молоко, яйца, печень, бобовые

Химическое название – пантотеновая кислота.

Образует кофермент – коэнзим А, который входит в состав ферментов, участвующих в окислении углеводов, липидов с целью получения энергии. Также кофермент участвует в синтезе липидов. Поэтому при недостатке пантотеновой кислоты развиваются симптомы – слабость, нарушении функции нервной, эндокринной систем, желудочно-кишечного тракта, поражение кожи.

Источники – мясо, яйца, молоко, печень, микрофлора кишечника.

Химическое название – никотиновая кислота, никотинамид, ниацин; биологическое название – антипеллагрический.

Образует коферменты – никотинамиддинуклеотид (НАД), никотинамиддинуклеотидфосфат (НАДФ). Эти коферменты входят в состав ферментов, которые участвуют в реакциях окисления углеводов, липидов с целью получения энергии. Поэтому при гиповитаминозе по никотинамиду развивается недостаток энергии, поражение органов и систем, поражение кожи – пеллагра (шелушение, зуд, покраснение).

Источники – мясо, молоко, яйца, печень. В организме никотинамид образуется из незаменимой аминокислоты трипотофана, которая поступает с продуктами животного происхождения.

Химическое название – пиридоксин, пиридоксаль, пиридоксамин; биологическое название – антидерматитный витамин.

Образует коферменты – пиридоксальфосфат и пиридоксаминфосфат. Эти коферменты входят в состав ферментов, которые участвуют в реакциях обмена аминокислот, синтезе гема, биогенных аминов, которые регулируют процессы обмена в нервной ткани. При гиповитаминозе по витамину наблюдаются анемия из-за снижения синтеза гема, снижается количество биогенных аминов, что вызывает нарушения со стороны нервной системы, нарушается синтез аминокислот, белков, углеводов. Кроме того, гиповитаминоз проявляется поражениями кожи в виде дерматитов.

Источники – мясо, молоко, яйца, печень, микрофлора кишечника.

Химическое название – фолиевая кислота.

Образует кофермент тетрагидрофолиевая кислота, который входит в состав ферментов, участвующих в синтезе азотистых оснований, аминокислот, а значит в синтезе нуклеиновых кислот, белков, что важно для размножения, развития, созревания клеток.

При гиповитаминозе наблюдается макроцитарная анемия, т.к. нарушается созревание эритроцитов, в результате в крови обнаруживаются незрелые эритроциты – макроциты, у которых снижена функция переноса кислорода.

Источники – растительная пища, микрофлора кишечника.

Химическое название – цианокобаламин, биологическое название – антианемический.

Образует коферменты – метилкобаламин, кобаламин. Эти коферменты входят в состав ферментов, которые участвуют в обмене азотистых оснований, регенерации метионина, синтезе сложных липидов, холина, креатина. При гиповитаминозе развивается макроцитарная анемия из-за нарушения созревания эритроцитов; нарушается синтез липопротеинов и функций мембран из-за недостатка холина, наблюдается снижение образования энергии с участием креатинфосфата.

Источники – мясо, молоко, яйца, печень, микрофлора кишечника

Химическое название – аскорбиновая кислота, биологическое название – антицинготный

Участвует в реакциях синтеза коллагена, обмена аминокислот, окислительно-восстановительных реакциях с целью получения энергии, обеспечивает всасывание железа в тонком кишечнике. При гиповитаминозе нарушается синтез коллагена, что сказывается на состоянии соединительной ткани, она становится слабой, хрупкой, ломкой. Например, становятся ломкими сосуды, в результате могут быть подкожные гематомы, частые носовые кровотечения. Кроме того, при гиповитаминозе развивается железодефицитная анемия, т.к. снижается всасывание железа в тонком кишечнике.

Источники – преимущественно цитрусовые, смородина, шиповник

Химическое название – биотин, биологическое название – антисеборейный.

Биотин участвует в реакциях синтеза углеводов, липидов. При гиповитаминозе наблюдается недостаток углеводов, липидов. Также развивается себорея – нарушения деятельности сальных желез.

Источники – мясо, молоко, печень, рыбий жир.

Витамин Аоению различают простые и сложные. ские реакции в организме. ств

Химическое название – ретинол, биологическое название — антиксерофтальмический

Роль витамина: — участвует в восприятии зрительных образов

— является антиоксидантом – защищает мембраны клеток от повреждений активными радикалами.

Образуется из предшественника β-каротина в печени.

При гиповитаминозе наблюдается куриная слепота, нарушается целостность мембран клеток.

Источники – морковь, перец, томаты, рыбий жир

Химическое название – эргокальцеферол, биологическое название – антирахитический. Образуется из холестерола при участии ультрафиолета.

Витамин Д участвует в процессах всасывания кальция в кишечнике и почках, что способствует его усвоению костями. При гиповитаминозе нарушается всасывание кальция в кишечнике, в результате наблюдается недостаток кальция и фосфора в организме, наблюдается ломкость костей, деформации скелета. У детей развивается рахит.

Химическое название – токоферол, биологическое название – антистерильный.

Участвует в процессах репродукции, является антиоксидантом.

При гиповитаминозе наблюдается бесплодие, невынашивание беременности, нарушение целостности мембран

Источники – растительные масла, подкожножировая клетчатка

Химическое название — менахинон, филлохинон, биологическое название – антигеморрагический

Является коферментом ферментов, которые участвуют в активации факторов свертывания крови. Поэтому при гиповитаминозе наблюдается снижение свертывания крови, частые кровотечения

Источники – растительная пища, микрофлора кишечника

Таким образом, поступление витаминов в организм зависит от состояния желудочно-кишечного тракта, т.е. причинами гиповитаминозов прежде всего являются заболевания пищеварительного тракта и нарушение деятельности микрофлоры кишечника.

Механизм действия ферментов

На первом этапе биохимической реакции происходит взаимодействие фермента с субстратом, образуется фермент-субстратный комплекс. На втором этапе происходит превращение субстрата при помощи активного центра фермента. На третьем этапе происходит отделение продуктов реакции.

Факторы, влияющие на активность ферментов

— ферменты проявляют наибольшую активность при температуре тела – 37 градусов; при снижении температуры активность фермента падает, но при нагревании препарата фермента до температуры тела его активность возобновляется. При температуре выше 40 градусов активность ферментов снижается из-за денатурации фермента, т.к. он является белком

— каждый фермент проявляет максимальную активность при определенной рН, например, фермент желудка пепсин активен при рН 1,5-2,0; ферменты тонкого кишечника работают при рН 7,5-8,0; фермент слюны амилаза требует рН 7,4

— при повышении количества фермента активность увеличивается

— при повышении количества субстрата активность фермента сначала увеличивается, затем не изменяется, т.к. весь фермент насыщен субстратом, и для того чтобы увеличить активность фермента нужно увеличить количество фермента.

Изоферменты – множественные формы фермента, которые катализируют одну и ту же реакцию, но различаются по физико-химическим свойствам: сродству к субстрату, подвижности при электрофорезе, регуляторным свойствам.

Например, фермент лактатдегидрогеназа (ЛДГ) – фермент с четвертичной структурой, содержит 2 типа субъединиц – М и Н. Молекула изоферментов ЛДГ образована 4 субъединицами. Поэтому ЛДГ имеет 5 изоферментов:

— ЛДГ2 состоит из НННМ – Н3М

— ЛДГ3 состоит из ННММ – Н2М2

— ЛДГ4 состоит из НМММ – НМ3

ЛДГ катализирует превращение пировиноградной кислоты в молочную кислоту (лактат).

При электрофорезе наибольшей подвижностью обладает изофермент ЛДГ1, наименьшей – ЛДГ5.

В скелетной мышце и миокарде преобладает активность ЛДГ1, а в печени – ЛДГ5. Это обстоятельство используют в клинической практике для диагностики заболеваний миокарда, скелетных мышц, печени. В норме активность изоферментов ЛДГ в сыворотке крови очень низкая. При повреждении соответствующих органов активность этих изоферментов возрастает в сыворотке крови. При увеличении активности ЛДГ1 в сыворотке крови подозревают поражение скелетных мышц или миокарда. Повышение активности ЛДГ5 в сыворотке крови может свидетельствовать о поражении печени.

Регуляция активности ферментов

Регуляция активности фермента осуществляется на уровне транскрипции и на уровне изменения активности синтезированного фермента.

Регуляция активности фермента на уровне транскрипции рассмотрена на примере лактозного оперона (в теме — Белки).

Регуляция активности синтезированного фермента происходит несколькими путями с участием гормонов.

А. Аллостерическая регуляция

В молекуле фермента различают аллостерический центр, который необходим для связывания различных веществ – активаторов и ингибиторов, которые регулируют активность фермента. Активаторы – вещества, ускоряющие активность ферментов. Например, ионы хлора увеличивают активность амилазы, соляная кислота активирует пепсин, желчь активирует липазу.

Читайте также:  Витамины для детей отзывы какие лучше рейтинг

Ингибиторы – вещества, снижающие активность ферментов. Различают конкурентное и неконкурентное ингибирование. Конкурентный ингибитор имеет структурное сходство с субстратом, поэтому конкурентный ингибитор может взаимодействовать с активным центром фермента. При этом взаимодействие субстрата с активным центром фермента снижается и активность фермента падает. Неконкурентный ингибитор присоединяется к ферменту в аллостерическом центре, в результате меняется пространственная конфигурация активного центра фермента, и субстрат не может присоединяться к активному центру, поэтому активность фермента падает.

Активность фермента регулируется по принципу прямой положительной связи – присутствие субстрата активирует фермент. Отрицательная обратная связь – продукт реакции ингибирует ферменты, которые принимали участие в синтезе этого продукта на начальных стадиях.

Б. Ковалентная модификация

Этот путь регуляции активности ферментов заключается в следующем. В молекуле фермента присутствуют радикалы серина, тирозина, треонина. К спиртовым группам этих аминокислот присоединяется фосфат, источником которого служит АТФ. Присоединение фосфата к молекуле фермента называется фосфорилированием. Для этого процесса необходим фермент протенкиназа. При фосфорилировании фермент либо активируется, либо инактивируется.

Кроме того, может наблюдаться противоположная реакция – отщепление фосфата от молекулы фермента – дефосфорилирование. Для этого необходим фермент фосфопротеифосфатаза. При этом дефосфорилированный фермент может активироваться или инактивироваться.

Например, в синтезе гликогена участвует гликогенсинтетаза, а в распаде гликогена — гликогенфосфорилаза. Дефосфорилирование этих ферментов приводит к активации гликогенсинтетазы и ингибированию гликогенфосфорилазы, при этом преобладает синтез гликогена, а его распад замедляется. Фосфорилирование гликогенсинтетазы и гликогенфосфорилазы при водит к активации гликогенфосфорилазы и ингибированию гликогенсинтетазы, т.е. преобладает распад гликогена, а его синтез замедляется.

В. Регуляция активности фермента путем ассоциации-диссоциации субъединиц в олигомерном ферменте

Например, неактивная форма протеинкиназы представлена комплексом связанных субъединиц RRCC. При распаде этого комплекса на RR и С, С образуются активные формы фермента – С.

Применение ферментов в медицине

Энзимотерапия – применение ферментов в качестве лекарств. Например, при заболеваниях желудочно-кишечного тракта наблюдается ферментативная недостаточность желудка, поджелудочной железы. При этом нарушается переваривание белков, жиров, углеводов. Для улучшения процессов переваривания используются препараты, которые содержат ферменты, расщепляющие белки, жиры, углеводы в пищеварительном тракте. В хирургии для лечения гнойных ран используются протеолитические ферменты, которые расщепляют белки гнойного содержимого раны, поврежденных тканей, при этом рана лучше очищается от налета.

Высокая активность ферментов может приводить к развитию различных заболеваний. Поэтому в медицине применяются ингибиторы активности этих ферментов, что облегчает состояние больных.

В медицине ферменты стрептокиназа и урокиназа применяются для расщепления тромбов, в результате улучшается кровоток в поврежденных тканях.

Энзимодиагностика – определение активности органоспецифических ферментов в биологических жидкости и использование полученных результатов для диагностики заболеваний. В норме в крови активность ферментов низкая, т.к. ферменты преимущественно находятся в тканях органов – органоспецифичность. Если органы поражаются патологическим процессом, то ферменты из органов высвобождаются в кровь, и обнаруживается высокая активность ферментов в крови.

Ферменты, имеющие диагностическое значение

— аспартатаминотрансфераза – АСТ. Отмечена высокая активность АСТ в мышечной ткани, менее активен фермент в печени. Если в крови обнаруживается высокая активность АСТ, то можно предполагать поражение мышечной ткани или печени

— аланинаминотрансфераза – АЛТ. Отмечена высокая активность фермента в печени, менее активен фермент в мышечной ткани. При повышении активности АЛТ в крови можно предположить поражение печени или мышечной ткани.

— креатинфосфокиназа – КФК. Отмечена высокая активность КФК в мышечной ткани, мозге. При повышении активность КФК в крови можно предполагать поражение мышечной ткани, мозга

— лактатдегидрогеназа – ЛДГ. Отмечена высокая активность ЛДГ в мышечной ткани, печени. При повышении активность ЛДГ в крови модно предполагать поражение мышечной ткани или печени

— гаммаглутамилтранспептидаза. Отмечена высокая активность фермента в печени, почках. При повышении активность фермента в крови можно предполагать патологию печени, желчевыводящих ходов или почек

— щелочная фосфатаза. Отмечена высокая активность фермента в печени, костной ткани. При повышении активности щелочной фосфатазы в крови можно предполагать поражение печени и желчевыводящих ходов, костной ткани.

— панкреатическая амилаза. Отмечена высокая активность фермента в поджелудочной железе. При повышении активности амилазы в крови и моче можно предполагать патологию поджелудочной железы.

Описаны наследственные заболевания, которые связаны с дефектом или отсутствием каких-либо ферментов.

Ферменты используются в лабораторной практике для определения различных метаболитов в биологических жидкостях.

Дата добавления: 2014-01-07 ; Просмотров: 4277 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Помимо витаминных препаратов в спортивной медицине применяются также некоторые их производные (коферменты).

В настоящее время установлено, что биокаталитическая активнось, как правило, принадлежит не самим витаминам, а продуктам их биотрансформации – коферментам. Коферменты, в свою очередь, соединяясь со специфическими белками, образуют ферменты – катализаторы биохимических реакций, лежащие в основе физиологических функций организма. В настоящее время известно строение многих ко‑ферментов, ряд из них удалось получить с помощью химического синтеза. Кроме того, открыты коферменты, не имеющие витаминных предшественников (карнитин, фосфаден, липоевая кислота).

Изучение фармакологической активности коферментов показало, что эти вещества, с одной стороны, обладают низкой токсичностью и, с другой, – весьма широким спектром воздействия на организм.

К числу коферментных препаратов витаминной природы относятся кокарбоксилаза (коферментная форма тиамина – витамин В1), пиридоксальфосфат. (витамин Вб), кобамамид (витамин В 12). Группа препаратов, созданных на основе витаминов, представлена пиридитолом (производное пиридоксина) – имеет мягкий стимулирующий эффект на ткани головного мозга; пантогамом (гомолог пантотеновой кислоты, содержащий гамма‑аминомасляную кислоту); оксикобаламином (метаболит витамина В 12).

Кокарбоксилаза – кофермент, образующийся в организме человека из поступающего извне тиамина. В спортивной медицине применяется для лечения перенапряжения миокарда и нервной системы, при печеночном синдроме, невритах и радикулитах. Эффект дает только внутривенное введение в дозе не менее 100 мг.

Кобамамид – обладает всеми свойствами витамина В 12 и анаболической активностью. В спортивной медицине применяется для тех же целей, что и витамин В 12, а также при перенапряжении миокарда, печеночном синдроме. Способствует увеличению массы скелетных мышц при интенсивных физических нагрузках, улучшению скоростно‑силовых показателей и ускорению восстановительных процессов после интенсивных физических нагрузок. Целесообразно сочетание кобамамида с карнитином, с препаратами аминокислот и продуктами повышенной биологической ценности. Рекомендуется прием 2‑3‑х таблеток ежедневно или внутримышечное введение 1000 мкг препарата в день, не менее 20 дней.

Оксикобаламин – является метаболитом цианкобаламина (витамин В12). По фармакологическому действию близок витамину В 12, но по сравнению с ним быстрее превращается в организме в активную коферментную форму и дольше сохраняется в крови, так как более прочно связывается с белками плазмы и медленнее выделяется с мочой. Показания к применению такие же, как для В 12.

Пиридоксальфосфат – является коферментной формой витамина Вб (пиридоксина). Препарат обладает свойствами витамина Вб. Отличается тем, что оказывает быстрый терапевтический эффект, может приниматься в случаях, когда нарушено фосфорилирование пиридоксина. Рекомендуется по 0,02 г – 3 раза в день через 15 мин после еды, курсом 10–30 дней.

Пиридитол, энцефабол (пиритинол) – фармакологический препарат, проявляет элементы психотропной активности, свойственной антидепрессантам, с седативньм действием. Активирует метаболические процессы в ЦНС, способствует ускорению проникновения глюкозы через гема‑тоэнцефалический барьер, снижает избыточное образование молочной кислоты, повышает устойчивость тканей к гипоксии. Малотоксичен, не обладает В6‑витаминной активностью. Применяют по 0,1 г – 3 раза в день через 15–30 мин после еды, не менее 4 недель. Не рекомендуется принимать в вечерние часы.

Пантогам (гомолог пантотеновой кислоты, содержащий гамма‑аминомасляную кислоту) – улучшает обменные процессы, повышает устойчивость к гипоксии, уменьшает реакции на болевые раздражения. Активизирует умственную деятельность и физическую работоспособность. В составе комплексной терапии применяют при черепно‑мозговой травме. Рекомендуется по 0,5 г – 2–3 раза в день через 15–30 мин после еды. Прием не менее 4 недель.

Карнитин – витаминоподобное вещество, частично поступающее с пищей, частично синтезируемое в организме человека. Способствует окислению жирных кислот, синтезу аминокислот и нуклеиновых кислот. В спортивной медицине рекомендован для повышения работоспособности в видах спорта с преимущественным проявлением выносливости для ускорения течения процессов восстановления. В скоростно‑силовых видах спорта оказывает стимулирующее действие на рост мышц. Выпускается как L‑карнитин (элькар, карнифит).

Флавинат – кофермент, который образуется в организме из рибофлавина путем фосфорилирования при участии АМФ. Лекарственная форма получена синтетическим путем. Флавинат применяют при отсутствии эффекта от применения витамина Вг. Применяют также при хронических заболеваниях печени, желудочно‑кишечного тракта, кожных заболеваниях. Препарат вводят в мышцу медленно.

Липоевая кислота – положительно влияет на углеводный обмен. Ускоряет окисление углеводов и жирных кислот, способствует повышению энергетического потенциала.

Фосфаден (синонимы: АМФ, аденил, аденозинмоно‑фосфат) – выпускается в виде таблеток по 0,025 и 0,05 г и 2 % раствора для инъекций. Суточная доза составляет до 0,15 г внутрь и до 0,12 г внутримышечно, продолжительность приема 2–4 недели.

Бета‑каротин – в организме превращается в витамин А, когда мы испытываем его нехватку. Бета‑каротин, поступивший с едой, используется организмом как антиоксидант.

Лучшие источники: морковь, помидоры, кресс‑салат, цветная капуста, шпинат, манго, тыква, дыня, абрикосы, а также другие фрукты и овощи с яркой окраской.

Содержание бета‑каротина уменьшается при хранении продуктов на солнечном свету. Бета‑каротин чрезвычайно стабилен при кулинарной обработке, и его количество может даже увеличиться. Это происходит потому, что бетакаротин высвобождается из клеток, когда при тепловой обработке овощей размягчаются клеточные стенки.

Суточная потребность для бета‑каротина официально не установлена, однако многие ученые рекомендуют дозу примерно 15 мг в день для максимальной антиоксидантной защиты.

О токсичности этого пищевого соединения ничего не известно, хотя очень большие дозы придают коже желтоватый оттенок.

Препараты: большинство добавок с бета‑каротином содержат его в количестве от 3 до 15 мг.

Калий. Натрий. Хлориды

Растворимые соли (хлориды калия и натрия) входят в состав всех жидкостей, находящихся в нашем теле, и участвуют во всем спектре биохимических реакций.

Эти элементы теряются у спортсменов с потом в повышенных количествах, так что может возникать потребность восполнения этих элементов специальными препаратами.

Обычная поваренная соль, которую добавляют в большинство продуктов при приготовлении пищи, обеспечивает организм натрием, однако важно не потреблять слишком много соли (хлорида натрия), потому что это создает лишнюю нагрузку на почки. Хлориды содержатся также в дрожжах, беконе и копченой рыбе.

Калий присутствует в дрожжах, фруктах и овощах. Содержание данных микроэлементов в продуктах незначительно уменьшается во время кулинарной обработки.

Дефицит маловероятен, поскольку эти элементы имеются в изобилии в большинстве продуктов. Дополнительные количества могут потребоваться только после интенсивных физических нагрузок, когда эти вещества теряются с потом.

– калий – 7‑10 лет 2,0 мг, 11–14 лет 3,7 мг, от 15 лет и старше 3,5 мг;

– натрий – 7‑10 лет 1,2 мг, от 11 лет и старше 1,6 мг;

– хлорид – 7‑10 лет 1,8 мг, 11 лет и старше 2,5 мг.

Токсичность: высокие уровни содержания в организме всех трех элементов приводят к проблемам с почками. Каждый элемент из этих трех взаимодействует с другими, так что добавка только одного из них может нарушить равновесие. При приеме калия в дозе больше 17 г отмечены токсичные побочные действия.

Препараты: не требуются, за исключением калия. Специальные напитки для спортсменов содержат эти три элемента в таком соотношении, чтобы восполнить их потерю при физической нагрузке.

Необходим для передачи нервных импульсов, поэтому иногда его называют «противострессовым элементом». Магний может помочь человеку подавить депрессию и поддерживает в здоровом состоянии систему кровообращения, помогает предотвращать болезни сердца.

Откладывается в костях и мягких тканях. Магний работает вместе с кальцием, следовательно, эти два элемента должны находиться в равновесии. Лучшие источники магния: соевые бобы, орехи, крупы из необрушенного зерна, мясо, рыба и морепродукты, финики.

Усвояемость магния уменьшается при совместном потреблении с фитатами, присутствующими в цельном зерне, и клетчаткой отрубей, которые связывают магний, делая его менее доступным для организма. Его усвоению мешают высокие количества фосфора, кальция, витамина D и жиров.

Случаи дефицита магния редки, так как магний широко распространен. Теряется этот элемент во время болезней, протекающих с высокой температурой, рвотой и расстройством кишечника.

– девочкам 11–14 лет 280 мг, 15–18 лет 300 мг, от 19 лет и старше 270 мг,

– мальчикам 11–14 лет 280 мг, от 15 лет и старше 300 мг.

Токсичность магния низкая. Признаки передозировки (3–5 г ежедневно в течение длительного времени) включают покраснение кожи и сильную жажду.

Препараты: большинство содержат от 200 до 500 мг магния.

Кальция в нашем организме довольно много – около 1200 г, причем более 99 % содержится в костях и зубах (98,90 % – в костях, 0,51 % – в зубах), 0,51 % – в мягких тканях, и остальные 0,08 % – это кальций, содержащийся в плазме крови и внеклеточной жидкости, где жесткое поддержание концентрации элемента имеет исключительно важное значение для организма. Кальций участвует в таких процессах, как проведение нервного импульса, поддержание мышечного тонуса, свертываемость крови, и т. д. Снижение уровня ионизированного кальция ведет к нарушениям минерализации костной ткани, снижению и утрате мышечного тонуса, повышенной возбудимости двигательных нейронов и мышечным судорогам, Профессиональный спорт – один из факторов риска по развитию остеопороза – системного заболевания костей, вызванного относительным недостатком кальция в организме вследствие его перераспределения. Избыточные физические нагрузки являются причиной возникновения патологии связочно‑суставного аппарата, патологических переломов, как следствие чрезвычайно больших неспецифических нагрузок (Например, неподготовленное освоение «конькового» хода у лыжников, бессистемное занятие бодибилдингом).

Читайте также:  Какой витамин принимать при сухости и шелушении кожи

Лучшие источники кальция: все молочные продукты, особенно сыр, йогурт и творог, а также зеленые листовые культуры, цветная капуста, кости консервированной рыбы лосося и сардин), арахис и семечки подсолнечника. В снятом молоке содержится немного больше кальция, чем в Сдельном молоке. Усваивается только 20–30 % от всего поступившего с едой кальция.

Дефицит кальция часто бывают у тех, кто потребляет много фосфора. Каждый, кто придерживается диеты без молочных продуктов, должен подумать о приеме препаратов кальцит.

Токсичность кальция низкая, так как его избыток автоматически удаляется фильтрующей системой организма. Однако высокие дозы витамина D могут привести к отложению кальция в почках.

– девочки 11–18 лет 800 мг, от 19 лет и старше 700 мг,

– мальчики 11–18 лет 1000 мг, от 19 лет и старше 700 мг.

У детей из‑за интенсивного роста костей большая потребность в кальции. Самая большая плотность костей достигается к 30–35 годам. Потом она уменьшается,

и мы теряем около 0,3 % кальция в год.

Последними научными разработками доказано, что кальций усваивается только в комбинации с активной формой витамина D.

Около 80 % фосфора в нашем организме находится в костях. Остальные 20 % жизненно необходимы для превращения пищи в энергию. Лучшие источники: все молочные продукты, овощи, рыба, мясо, орехи, цельное зерно. Дефицит фосфора встречается редко, поскольку фосфор поступает в организм с самыми разными продуктами и обычно используется во многих пищевых добавках.

– девочки 7–9 лет 450 мг, 11–18 лет 625 мг, от 19 лет и старше 550 мг,

– мальчики 11–18 лет 775 мг, от 19 лет и старше 550 мг.

Высокие уровни содержания фосфора в организме мешают усвоению кальция и могут привести к хрупкости костей.

Препараты с фосфором не нужны для здорового человека с обычным уровнем нагрузки, но спортсмену при выполнении скоростной работы необходима диета с повышенным содержанием фосфора и специфические препараты (см. «Фосфагены»).

В медицине этот элемент приобрел популярность в качестве добавки для укрепления костей. Предполагается, что бор способствует предотвращению остеопороза и артрита.

Лучшие источники: корневые овощи, выращенные в почве, обогащенной бором.

Содержание бора уменьшается из‑за чрезмерной очистки продуктов. Ярко выраженные случаи с признаками дефицита бора не отмечены.

Суточная потребность не установлена, но в обычной диете содержится около 2 мг бора.

Симптомы токсичности появляются при дозах около 100 мг.

Биологически активные добавки обычно содержат 1–3 мг бора. Для улучшения всасывания добавки бора должны быть сбалансированы с кальцием, магнием и витамином D.

Микроэлементы

Микроэлементы являются жизненно необходимыми компонентами тканей организма. Находясь в незначительных концентрациях в структуре ряда важнейших ферментов, гормонов, витаминов и других биологических активов организма, микроэлементы способны стимулировать или угнетать многие биохимические процессы. Присутствие микроэлементов особенно важно у спортсменов в период тяжелых тренировочных нагрузок и соревнований, когда обмен веществ резко ускорен.

Около половины всего железа в нашем организме существует в форме гемоглобина – вещества, которое придает крови красный цвет.

Гемоглобин переносит кислород из легких по всему телу, поэтому низкое содержание железа проявляется в усталости и мышечной слабости.

Железо требуется для структурного построения мышечных белков (миоглобин). Оно участвует во многих биохимических реакциях как катализатор. Железо откладывается про запас в почках и печени и других органах ретикулоэндотелиальной системы. Запасы истощаются, если в питании железа не хватает, и начинается анемия. Большие потери железа отмечаются у женщин во время менструальных кровопотерь. Потери железа у спортсменов больше, чем у просто здорового человека.

Но повышенное количество железа может привести к повышенной активности свободных радикалов, приносящих вред всем клеткам тела.

Для того чтобы железо эффективно работало в организме, необходимы кальций и медь. Лучшие природные источники: мясо (говядина), печенка, почки. В меньших концентрациях железо представлено в хлебе, крупяных изделиях, яблоках, фасоли, орехах и зеленых листовых культурах. Из этих продуктов усваивается значительно меньше железа, чем из мяса.

Железо присутствует в пище в двух формах: органической (гем) и неорганической (негем). Железо в форме гема находится в мясе, и оно легко усваивается. «Негемовое» железо, присутствующее в овощах, должно восстанавливаться витамином С до «гемового», а потом уже всасываться. Его усвоению мешают кофеин, фитин.

О низком количестве железа свидетельствует бледная кожа и бледные нижние веки, что является классическими признаками анемии. Другие признаки – усталость, сонливость, апатия или раздражительность, снижение внимания, слабое зрение, расстройство желудка и онемение пальцев рук и ног. Недостаток железа, выраженный в том числе ив виде анемии, – обычное явление у спортсменов, не контролирующих количество «железа запасов».

Суточная потребность: 7‑10 лет 8,7 мг, мальчики 11–18 лет 11,3 мг, после восемнадцати лет и старше 8,7 мг, девочки 11–18 лет и женщины до 50‑ти лет 14,8 мг. Этой дозы недостаточно для женщин с обильными менструальными кровопотерями, которые теряют в этот период большую часть железа. Наиболее практичным способом обеспечения нужным количеством железа для этих женщин будет постоянный прием препаратов.

Высокие дозы железа могут вызвать боли в желудке, поносы, запоры. Доза около 100 г может быть летальной для взрослых.

Элемент участвует в метаболизме углеводов и жиров, вовлечен в процесс образования инсулина. По неизвестной причине у представителей восточных рас в костях и коже содержится вдвое больше хрома, чем у европейцев.

Лучшие источники: дрожжи, желток яиц, печенка, проростки пшеницы, сыр и крупы из необрушенного зерна.

Содержание хрома уменьшается из‑за чрезмерной очистки продуктов. При обработке цельного зерна с получением белой муки теряется почти 80 % хрома. Из неочищенного сахара после превращения его в белый гранулированный песок уходит 98 % хрома.

Низкие уровни хрома в организме вызывают резкие колебания содержания сахара в крови и могут способствовать развитию диабета. К дефициту хрома могут привести высокие уровни сахара в диете.

Признаки низкого количества хрома включают спутанность сознания, раздражительность, трудности с запоминанием и сильную жажду.

Суточная потребность: официальной дозы нет. Безопасное и достаточное количество хрома, как считают, составляет для взрослых около 25 мкг. Собственно, всасывается и используется организмом менее 10 % нашей дневной дозы хрома.

С возрастом способность усваивать и запасать хром уменьшается, так что пожилым требуется, видимо, более высокая доза. Лучше всего усваиваются хелатированные формы хрома. Для приема можно рекомендовать пиколинат и хелатаминокислоты.

Токсичность хрома Низкая, частично из‑за того, что этот элемент очень плохо усваивается.

Большинство препаратов содержит от 25 до 100 мкг хрома.

Незаменимый компонент многих биохимических реакций в организме. Участвует в образовании красных кровяных телец. Медь действует и как антиоксидант, поскольку это компонент многих ферментов, присутствующих в клетках, включая супероксиддисмутазу, которая подавляет свободные радикалы.

Лучшие источники: печенка, крабы (раки), орехи, крупы из цельного зерна, чечевица,*оливки и морковь. В пищу медь также может попасть через пестициды. Содержание меди в продуктах уменьшается очень редко. Дефицит меди проявляется бледной кожей, заметными венами, кишечными расстройствами. Сверхдефицит может привести к хрупкости костей, поседению волос, а низкое содержание в лимфоцитах – к понижению устойчивости организма к инфекциям. Низкие уровни меди редки, поскольку это распространенный элемент.

– девочкам 7‑10 лет 0,7 мг, 11–14 лет 0,8 мг, 15–18 лет 1,0 мг, 19 лет и старше 1,2 мг,

– мальчикам 11–14 лет 0,8 мг, 15‑18лет 1,0 мг, от 19летистарше 1,2 мг.

Токсичность меди низкая, за исключением больших доз, когда симптомы могут включать рвоту, боли в животе.

Большинство препаратов содержат от 1 до 3 мг. Многие поливитаминные препараты с минеральными добавками не содержат меди, потому что ее избыток вреден, в то время как в пище она есть всегда.

Хорошо известен как регулятор функции щитовидной железы, которая управляет обменом веществ и регулирует вес. Йод способствует образованию гормонов, включая тироксин и трийодтиронин, которые контролируют скорость обмена веществ, сопровождаемого высвобождением энергии, т. е. скорость сжигания кислорода в организме. Функционирование щитовидной железы также влияет на рост детей. Иод является важным антидотовым соединением для снижения дозы облучения и послерадиационного воздействия.

Лучшие источники: морепродукты, рыба, морские водоросли. Содержание йода в организме уменьшается при употреблении в пищу кочанной и цветной капусты, кукурузы, батата (сладкого картофеля) и фасоли. Его усвоение ухудшается и из‑за приема многих лекарств.

Дефицит йода отмечается в ареалах проживания с низким содержанием йода в воде (например Самарская область); если с пищей не употребляются морепродукты. Сверхдефицит бывает причиной заболевания щитовидной железы.

Суточная потребность: 7‑10 лет 110 мкг, девочкам и мальчикам 11–14 лет 130 мкг, от 15 лет и старше 140 мкг.

Токсичность умеренная. Безопасный верхний уровень суточной дозы не должен превышать 17 мкг на килограмм веса человека, т. е. не более 1000 мкг на среднестатистического взрослого.

Однако суточные дозы йода не должны превышать 250 мкг, если только за приемом этого препарата не наблюдает специалист. При дерматитах йод может быть причиной ухудшения протекания болезни.

Большинство выпускаемых препаратов содержат от 25 до 250 мкг йода.

Необходим для нормального роста и развития. Помогает в синтезе защитного гликопротейна, покрывающего клетки. Кроме того, необходим организму, чтобы создавать естественный противовирусный агент интерферон и способствовать регуляции содержания сахара в крови. Марганец работает и как антиоксидант, поскольку входит в состав фермента под названием супероксиддисмутаза. Этот фермент борется со свободными радикалами. Марганец нужен нашему организму для того, чтобы в полной мере использовались витамины С, Е и комплекс витаминов В.

Лучшие источники: овес, проростки пшеницы, орехи (особенно миндаль и фундук), крупы из цельного зерна, ананасы, сливы, фасоль, сахарная свекла и салаты.

Содержание марганца уменьшается из‑за чрезмерной очистки продуктов, (в очищенной белой муке остается, как установлено, менее одной шестой количества марганца, которое содержалось в муке цельного помола).

Дефицит марганца встречается редко, так как этот элемент присутствует во многих продуктах.

Официальной дозы суточной потребности нет. Вряд ли нехватка марганца будет у тех, кто ест много орехов и цельное зерно. Однако у людей с избыточным содержанием меди в организме может быть нехватка марганца, так как организм использует его для предупреждения возникновения патологии от избыточного содержания меди;

Он присутствует в чае, и те, кто выпивает шесть или более чашек в день, получают достаточную дозу марганца (хотя кофеин содержащийся в чае, препятствует всасыванию других пищевых соединений),

Токсичность марганца низкая. Высокие уровни могут вызвать сонливость и заболевание мышц.

Большинство препаратов содержат от 3 до 20 мг марганца. Лучше принимать в форме хелатов аминокислот и глюконата, так как они легче усваиваются организмом.

Большая часть молибдена откладывается в печени, а потом расходуется на метаболизм железа. Он имеет различные функции и предотвращает разрушение зубов и импотенцию. Молибден помогает удалять излишки меди из организма. Лучшие источники: гречка, бобовые, пшеничные проростки, печенка, ячмень, соевые, рожь, яйца, изделия из муки цельного помола и хлеб.

Содержание молибдена уменьшается из‑за чрезмерной очистки продуктов, а также при выращивании сельскохозяйственных культур на скудных почвах. Дефицит молибдена встречается редко. Признаки дефицита включают беспокойство и аритмичный пульс.

Официальной дозы суточной потребности нет, но в США рекомендуют детям (в зависимости от возраста) дозу от 30 до 300 мкг, взрослым – от 150 до 500 мкг.

Токсичность молибдена низкая. Высокие уровни (10–15 мг в день) могут вызвать подагру и увеличенное выделение меди, что ведет к ее нехватке в организме.

Большинство выпускаемых биоактйвных добавок содержат от 5 до 500 мкг молибдена.

Это редкий и очень ценный для организма элемент. Жизненно необходим как антиоксидант. Селен нужен также для образования белков в нашем организме, он поддерживает нормальную работу печени и укрепляет иммунную систему. Селен – компонент спермы, важный для поддержания репродуктивной функции. Селен помогаетвыводить из организма ионы тяжелых металлов, включая кадмий и мышьяк (это необходимо для курильщиков)»

Лучшие источники: дрожжи, чеснок, яйца, печенка и рыба.

Содержание селена в организме уменьшается при курении. Дефицит селена вызывает боли в груди, облысение, усиливает предрасположенность к инфекциям.

Суточная потребность: 7‑10 лет 30 мкг, девочки 11–14 лет 40 мкг сут. 15 лет и старше 60 мкг, мальчики 11–14 лет 45 мкг, 15‑

Дата добавления: 2018-10-26 ; просмотров: 123 ; ЗАКАЗАТЬ РАБОТУ

источник