Меню Рубрики

Из чего получают таблетку витамина

Не будем излагать историю открытия витаминов и пересказывать, как каждый из них действует на множество происходящих в организме биохимических процессов. Посвятим эту статью практическим вопросам, о которых и так все всё знают, — тому, что в области витаминотерапии и пациенты, и даже врачи считают истиной и что на самом деле абсолютно не соответствует действительности. Начнем с самого главного и вредного заблуждения.

Миф 1. Потребность в витаминах можно полностью обеспечить за счет полноценного питания.

Нельзя — по целому ряду причин. Во‑первых, человек слишком быстро «произошел от обезьяны». Современные шимпанзе, гориллы и прочие наши родственники целый день набивают себе брюхо огромным количеством растительной пищи, при этом сорванной прямо с дерева в тропическом лесу. А содержание витаминов в дикорастущих вершках и корешках в десятки раз больше, чем в культурных: отбор сельскохозяйственных сортов тысячи лет происходил не по их полезности, а по более очевидным признакам — урожайности, сытности и устойчивости к болезням. Гиповитаминоз вряд ли был проблемой №1 в питании древних охотников и собирателей, но с переходом на земледелие наши предки, обеспечив себе более надежный и обильный источник калорий, начали испытывать нехватку витаминов, микроэлементов и других микронутриентов (от слова nutricium — питание). Еще в XIX веке в Японии ежегодно до 50 000 бедняков, питавшихся в основном очищенным рисом, умирали от бери-бери — авитаминоза В1. Витамин РР (никотиновая кислота) в кукурузе содержится в связанном виде, а его предшественник, незаменимая аминокислота триптофан, — в ничтожных количествах, и те, кто кормился одними тортильяс или мамалыгой, болели и умирали от пеллагры. В бедных странах Азии до сих пор не меньше миллиона человек в год умирают и полмиллиона слепнет из-за того, что в рисе нет каротиноидов — предшественников витамина А (собственно витамина А больше всего в печени, икре и других мясо- и рыбопродуктах, а первый симптом его гиповитаминоза — нарушение сумеречного зрения, «куриная слепота»).

Витамины (лат. vita — жизнь) — низкомолекулярные органические соединения, которые в человеческом организме не синтезируются (или синтезируются в недостаточном количестве) и являются активной частью многих ферментов или исходными веществами для синтеза гормонов. Ежедневная потребность человека в различных витаминах составляет от нескольких микрограммов до десятков миллиграммов. Больше никаких общих признаков у витаминов нет, разделить их на группы невозможно ни по химическому составу, ни по механизмам действия, и единственная общепринятая классификация витаминов — деление их на водо- и жирорастворимые.
По строению витамины относятся к самым разным классам химических соединений, а функции их в организме очень разнообразны — не только у разных витаминов, но и у каждого отдельно взятого. Например, витамин Е традиционно считают в первую очередь необходимым для нормальной работы половых желез, но эта его роль на уровне целого организма — всего лишь первая по времени открытия. Он предохраняет от окисления ненасыщенные жирные кислоты мембран клеток, способствует усвоению жиров и, соответственно, других жирорастворимых витаминов, действует как антиоксидант, нейтрализуя свободные радикалы, и этим предупреждает образование раковых клеток и замедляет процесс старения, (чтобы понять, как он это делает, нужно для начала выучить трехкилограммовый учебник биохимии). Для большинства остальных витаминов основным также считается самый видимый невооруженным глазом симптом, по которому его когда-то и открыли. Так что уверенность в том, что витамин D помогает от рахита, С — от цинги, В12 необходим для кроветворения — это еще одно распространенное заблуждение о витаминах.
Водорастворимые витамины — это витамин С (аскорбиновая кислота), Р (биофлавоноиды), РР (никотиновая кислота) и витамины группы В: тиамин (В1), рибофлавин (В2), пантотеновая кислота (В3), пиридоксин (В6), фолацин, или фолиевая кислота (В9), кобаламин (В12). К группе жирорастворимых витаминов относятся витамины А (ретинол) и каротиноиды, D (кальциферол), Е (токоферол) и К. Кроме 13 витаминов, известно примерно столько же витаминоподобных веществ — В13 (оротовая кислота), В15 (пангамовая кислота), H (биотин), F (омега-3-ненасыщенные жирные кислоты), парааминобензольная кислота, инозитол, холин и ацетилхолин Кроме собственно витаминов, поливитаминные препараты обычно содержат органические соединения микроэлементов — веществ, необходимых человеческому организму в ничтожных (не более 200 мг в ДЕНЬ) количествах. Основные из примерно 30 известных микроэлементов — это бром, ванадий, железо, йод, кобальт, кремний, марганец, медь, молибден, селен, фтор, хром и цинк.

Умеренный и даже выраженный гиповитаминоз в России имеется не меньше чем у трех четвертей населения. Близкая проблема — дисмикроэлементоз, избыток одних и недостаток других микроэлементов. Например, умеренно выраженный дефицит йода — явление повсеместное, даже в приморских районах. Кретинизм (увы, только как болезнь, вызванная отсутствием йода в воде и пище) теперь не встречается, но, по некоторым данным, недостаток йода снижает коэффициент интеллектуальности примерно на 15%. А уж к росту вероятности заболеваний щитовидной железы приводит несомненно.

Солдату дореволюционной российской армии при суточных энерготратах в 5000—6000 ккал было положено ежедневное довольствие, включающее, кроме прочего, три фунта черного хлеба и фунт мяса. Полторы-две тысячи килокалорий, которых хватает на день сидячей работы и лежачего отдыха, гарантируют вам нехватку примерно 50% нормы примерно половины известных витаминов. Особенно в том случае, когда калории получены из продуктов рафинированных, замороженных, стерилизованных И даже при максимально сбалансированной, высококалорийной и «натуральной» диете нехватка некоторых витаминов в рационе может доходить до 30% от нормы. Так что принимайте поливитамины — по 365 таблеток в год.

Миф 2. Синтетические витамины хуже натуральных

Многие витамины извлекают из природного сырья, как РР из кожуры цитрусовых или как В12 из культуры тех же самых бактерий, которые синтезируют его в кишечнике. В природных источниках витамины спрятаны за клеточными стенками и связаны с белками, коферментами которых они являются, и сколько вы их усвоите, а сколько пропадет, зависит от множества факторов: например, жирорастворимые каротиноиды на порядок полнее усваиваются из морковки, мелко натертой и тушенной с содержащей эмульгированный жир сметаной, а витамин С, наоборот, при нагревании быстро разлагается. Кстати, вы знаете, что при выпаривании натурального сиропа шиповника витамин С разрушается полностью и только на последнем этапе приготовления в него добавляют синтетическую аскорбиновую кислоту? В аптеке с витаминами ничего не происходит до конца срока годности (и на самом деле — еще несколько лет), а в овощах и фруктах их содержание уменьшается с каждым месяцем хранения и тем более при кулинарной обработке. А после приготовления, даже в холодильнике, — еще быстрее: в нарезанном салате через несколько часов витаминов становится в несколько раз меньше. Большинство витаминов в природных источниках присутствует в виде целого ряда сходных по строению, но разных по эффективности веществ. В аптечных препаратах содержатся те варианты молекул витаминов и органических соединений микроэлементов, которые легче усваиваются и действуют наиболее эффективно. Витамины, полученные с помощью химического синтеза (как витамин С, который делают и био-технологическим, и чисто химическим путем), ничем не отличаются от природных: по структуре это несложные молекулы, и в них просто не может быть никакой «жизненной силы».

Миф 1. Лошадиные дозы витамина … помогают от …

В медицинской литературе статьи на эту тему регулярно появляются, но через 10−20 лет, когда разрозненных исследований на разных группах населения, с разными дозировками накапливается достаточно много, чтобы провести их метаанализ, выясняется, что это очередной миф. Обычно результаты такого анализа сводятся к следующему: да, нехватка этого витамина (или другого микронутриента) ассоциируется с большей частотой и/или тяжестью этого заболевания (чаще всего — с какой-нибудь одной или несколькими формами рака), но доза, в 2−5 раз превышающая физиологическую норму, не влияет ни на заболеваемость, ни на течение болезни, а оптимальная дозировка — примерно та, что указана во всех справочниках.

Миф 2. Грамм аскорбинки в день защищает от простуды и вообще от всего на свете.

Дважды нобелевские лауреаты тоже ошибаются: вошедшие в моду с подачи Лайнуса Полинга гипер- и мегадозы витамина С (до 1 и даже 5 г в день при норме 50 мг), как выяснилось уже много лет назад, не приносят пользы рядовым гражданам. Снижение заболеваемости (на несколько процентов) и продолжительности ОРЗ (менее чем на один день) по сравнению с контрольной группой, принимавшей обычное количество аскорбинки, удалось выявить только в нескольких исследованиях — у лыжников и спецназовцев, тренировавшихся зимой на Севере. Но и большого вреда от мегадоз витамина С не будет, разве что гиповитаминоз В12 или камни в почках, да и то только у немногих из самых рьяных и фанатичных сторонников аскорбинизации организма.

Миф 3. Лучше недобор витаминов, чем их перебор.

Чтобы перебрать витаминов, нужно очень постараться. Разумеется, есть и исключения, особенно для входящих в состав большинства поливитаминных комплексов минеральных веществ и микроэлементов: тем, кто каждый день съедает порцию творога, не нужен дополнительный прием кальция, а тем, кто работает в гальваническом цехе, — хрома, цинка и никеля. В некоторых местностях в воде, почве и в конечном итоге в организмах живущих там людей присутствуют избыточные количества фтора, железа, селена и других микроэлементов, а то и свинца, алюминия и прочих веществ, польза которых неизвестна, а вред не вызывает сомнений. Но состав поливитаминных таблеток обычно подобран так, что в подавляющем большинстве случаев они покрывают дефицит микронутриентов у среднестатистического потребителя и гарантируют невозможность серьезной передозировки даже при ежедневном и длительном приеме в дополнение к обычному рациону нескольких таблеток.

Гипервитаминозы в большинстве случаев наступают при длительном потреблении витаминов (и только жирорастворимых, которые накапливаются в организме) в дозах, на порядки превышающих норму. Чаще всего, и то исключительно редко, такое встречается в практике педиатров: если от большого ума вместо одной капли в неделю давать новорожденному по чайной ложке витамина D в день… Остальное — на грани анекдотов: например, ходит байка о том, как чуть ли не все хозяйки в поселке купили под видом подсолнечного масла раствор витамина D, украденный с птицефабрики. Или — говорят, бывало и такое — начитавшись всяких бредней о пользе каротиноидов, «предотвращающих рак», люди начинали литрами в день пить морковный сок, и некоторые от этого не просто желтели, а допивались до летального исхода. Усвоить больше определенного природой максимума витаминов через желудочно-кишечный тракт при разовом приеме невозможно: на каждом этапе всасывания в кишечный эпителий, передачи в кровь, а из нее — в ткани и клетки необходимы транспортные белки и рецепторы на поверхности клеток, количество которых строго ограничено. Но на всякий случай многие фирмы фасуют витамины в баночки с «ребенкоустойчивыми» крышками — чтобы младенец не слопал за раз мамину трехмесячную норму.

Миф 1. От витаминов бывает аллергия.

Аллергия может развиться на какой-нибудь лекарственный препарат, который вы принимали раньше и часть молекулы которого по структуре похожа на один из витаминов. Но и в этом случае аллергическая реакция может проявиться лишь при внутримышечном или внутривенном введении этого витамина, а не после приема одной таблетки после еды. Иногда аллергию могут вызвать входящие в состав таблеток красители, наполнители и вкусовые вещества.

В этом случае рекомендуется перейти на витамины другой фирмы — возможно, в них не содержится именно этого компонента.

Русский аналог этой пословицы — «лук от семи недуг» — тоже неверен. Овощи и фрукты (сырые!) могут служить более-менее надежным источником витамина С, фолиевой кислоты (витамина В9) и каротина. Чтобы получить суточную норму витамина С, нужно выпить 3−4 литра яблочного сока — из очень свежих яблок или консервированного, в котором содержится примерно столько витаминов, сколько указано на упаковке. Около половины витамина С листовые овощи теряют уже через день после сбора, покрытые кожурой овощи и фрукты — после нескольких месяцев хранения. С другими витаминами и их источниками происходит то же самое. Большинство витаминов разлагается при нагревании и под действием ультрафиолета — не держите бутылку с растительным маслом на подоконнике, чтобы добавленный в него витамин Е не разрушился. И при кипячении и тем более при жарке многие витамины разлагаются с каждой минутой. А если вы прочитаете фразу «100 г гречки содержит…» или «в 100 г телятины содержится…», вас обманули как минимум дважды. Во‑первых, содержится это количество витамина в сыром продукте, а не в готовом блюде. Во‑вторых, километровые таблицы кочуют из одного справочника в другой не менее полувека, а за это время содержание витаминов и других микронутриентов в новых, более урожайных и калорийных сортах растений и в выкормленных ими свининах, говядинах и курятинах снизилось в среднем в два раза. Правда, многие продукты в последнее время витаминизируют, но в целом получить достаточно витаминов с пищей невозможно.

Миф 2. При постоянном приеме витаминов развивается привыкание к ним.

Привыкание к воздуху, воде, а также жирам, белкам и углеводам никого не пугает. Больше, чем то количество, на которое рассчитаны механизмы усвоения витаминов, вы не получите — если не будете несколько месяцев или даже лет принимать дозы, на порядки больше необходимых. И так называемый синдром отмены для витаминов не характерен: после прекращения их приема организм просто возвращается в состояние гиповитаминоза.

Миф 3. Люди, которые не принимают витаминов, чувствуют себя прекрасно.

Да — примерно так же, как прекрасно чувствует себя дерево, растущее на скале или на болоте. Симптомы умеренного полигиповитаминоза вроде общей слабости и вялости заметить трудно. Так же трудно бывает догадаться, что сухость кожи и ломкость волос надо лечить не кремами и шампунями, а приемом витамина А и тушеной морковки, что нарушения сна, раздражительность или себорейный дерматит и угревая сыпь — признаки не невроза или гормонального дисбаланса, а нехватки витаминов группы В. Выраженные гипо- и авитаминозы чаще всего бывают вторичными, вызванными какой-нибудь болезнью, при которой нарушается нормальное усвоение витаминов. (И наоборот: гастрит и анемия — нарушение кроветворной функции, видное невооруженным глазом по синюшности губ, — могут быть и следствием, и причиной гиповитаминоза В12 и/или нехватки железа.) А связь гиповитаминоза и повышенной заболеваемости, вплоть до большей частоты переломов при недостатке витамина D и кальция или повышенной встречаемости рака предстательной железы при нехватке витамина Е и селена, заметна только при статистическом анализе больших выборок — тысяч и даже сотен тысяч человек, и часто — при наблюдении в течение нескольких лет.

Миф 4. Витамины и минеральные элементы препятствуют усвоению друг друга.

Особенно активно эту точку зрения отстаивают производители и продавцы различных витаминно-минеральных комплексов для раздельного приема. А в подтверждение они приводят данные экспериментов, в котором один из антагонистов поступал в организм в обычном количестве, а другой — в десятикратно больших дозах (выше мы упоминали гиповитаминоз В12 как результат увлечения аскорбинкой). Мнения специалистов о целесообразности деления обычной дневной дозы витаминов и минералов на 2−3 таблетки расходятся с точностью до наоборот.

Читайте также:  Витамины для женщин для чего нужны

Миф 5. «Эти» витамины лучше «Тех».

Обычно поливитаминные препараты содержат не менее 11 из 13 известных науке витаминов и примерно столько же минеральных элементов, каждый — от 50 до 150% от дневной нормы: компонентов, нехватка которых встречается крайне редко, — меньше, а веществ, особо полезных для всех или отдельных групп населения, — на всякий случай побольше. Нормы в разных странах различаются, в том числе в зависимости от состава традиционного питания, но не намного, так что можно не обращать внимания на то, кто установил эту норму: американская FDA, Европейское бюро ВОЗ или Наркомздрав СССР. В препаратах одной и той же фирмы, специально разработанных для беременных и кормящих женщин, пожилых людей, спортсменов, курильщиков , количество отдельных веществ может различаться в несколько раз. Для детей, от грудничков до подростков, тоже подбирают оптимальные дозировки. В остальном, как говорили когда-то в рекламном ролике, — все одинаковые! А вот если на упаковке «уникальной натуральной пищевой добавки из экологически чистого сырья» не указан процент от рекомендуемой нормы или вообще не написано, сколько милли- и микрограммов или международных единиц (МЕ) содержит одна порция, — это повод задуматься.

Миф 6. Самая новая легенда.

Год назад СМИ всего мира облетела новость: шведские ученые доказали, что витаминные добавки убивают людей! Прием антиоксидантов в среднем увеличивает коэффициент смертности на 5%!! Отдельно витамин Е — на 4%, бета-каротин — на 7%, витамин А — на 16%. А то и больше — наверняка многие данные о вреде витаминов остаются неопубликованными!

Перепутать причину и следствие при формальном подходе к математическому анализу данных очень просто, и результаты этого исследования вызвали волну критики. Из уравнений регрессии и корреляций, полученных авторами сенсационного исследования (Bjelakovic et al., JAMA, 2007), можно сделать прямо противоположный и более правдоподобный вывод: больше общеукрепляющих средств принимают те пожилые люди, которые хуже себя чувствуют, больше болеют и, соответственно, скорее умирают. Но очередная легенда наверняка будет гулять по СМИ и общественному сознанию так же долго, как и другие мифы о витаминах.

источник

Вам интересно знать, как получают натуральные витамины? Тогда эта статья для Вас. Ежедневно организм человека нуждается в витаминной подпитке, которая является для нас, по большому счёту, источником жизни. Во времена, когда человечество ещё не познало техногенного прогресса, все полезные вещества люди получали из пищи. Сегодня взять весь объём необходимых веществ вместе с едой практически невозможно. Нашими незаменимыми помощниками в этой ситуации становятся натуральные витамины. Да-да, не синтетические, не фракционированные, а именно натуральные. От всех других типов они отличаются способом производства, который позволяет сохранить в препарате максимум полезных веществ, необходимых организму для нормальной работы. Применяемые способы обработки сырья сохраняют его естественную структуру и не разрушают связей между веществом.

В качестве сырья для производства натуральных витаминов используются овощи, фрукты, ягоды растения, богатые полезными веществами разных групп и категорий. Для сравнения: при изготовлении синтетических препаратов берутся заготовки, полученные искусственным путём. В них не удаётся воссоздать молекулярную структуру, свойственную натуральным витаминным добавкам, и сохранить все полезные компоненты в комплексе. А значит, и наш организм не сможет их усвоить без вспомогательных веществ.

В качестве примера можно привести всем знакомую с детства аскорбиновую кислоту, которая является всего лишь одним из элементов витамина С.

А вот натуральные препараты, сразу же после попадания в кровеносную систему, отлично усваиваются. При этом коэффициент использования таких витаминов значительно выше, чем при приёме синтетических аналогов, которые, кстати, немного дешевле.

Из чего делают натуральные витаминные комплексы? Из обычных для нас продуктов растительного происхождения. Выбираются из них те, которые содержат максимальное количество полезных веществ, и произрастают в форме наиболее удобной для переработки. Так, к примеру, многие производители для получения витаминных концентратов используют вишню ацеролу, петрушку, кресс, люцерну.

Процесс производства натуральных витаминов достаточно сложен и состоит из нескольких этапов. Над его разработкой трудились учёные из разных областей знания. Свою лепту в создание уникальной технологии внесли химики, биологи, диетологи, фитологии, занимающиеся изучением растений.

В основе производства витаминных препаратов лежит процесс дегидратации, говоря более простым языком обезвоживания. Из растения или плода полностью извлекается влага, которая препятствует длительному хранению того или иного продукта. При этом процесс дегидратации должен осуществляться при определённой температуре. В противном случае многие ферменты будут разрушены и добавки не принесут никакой пользы. Дегидратацию можно проводить с помощью сушки, холодного отжима, выпаривания.

Помимо влаги необходимо удалить и все волокна как элемент, не содержащий полезных веществ. После дегидратации высушенная масса тщательно измельчается. Её в дальнейшем используют для получения комплексных витаминных препаратов, или индивидуальных витаминов.

Данный процесс описан очень схематично. На самом деле, чтобы он прошёл успешно, необходимо соблюсти множество условий и выполнить ряд манипуляций (предварительно подготовить сырьё, запустить оборудование, приготовить вспомогательные компоненты). Кроме того, многое зависит от того или иного вида натуральных витаминов. К примеру, многие из них разрушаются при термической обработке. Поэтому их производство проходит с тщательным контролем температурного режима. Многие технологические процессы получения натуральных витаминов охраняются законом, а некоторые являются даже секретными. Сотни учёных внесли свою лепту в технологию изготовления витаминов, минеральных добавок и биологически активных препаратов.

Конечно, чтобы получить натуральный витаминный препарат, нужно затратить немало усилий, времени и ресурсов. Но результат того стоит: они позволяют нам сохранить молодость и здоровье.

источник

Витаминная эйфория

В последние годы многие говорят о ценности и полезности витаминов. Поскольку витамины дешево производить в лаборатории, их продают как нечто необходимое для здорового образа жизни. При этом здоровье зависит не только от количества принимаемых витаминов, а и от пропорционального соотношения жиров, белков, углеводов, минералов и разнообразных других биологически активных веществ. Кроме того, имеет значение физическая активность, образ жизни, курение, алкоголь, прием лекарств.

Витамины могут присутствовать в натуральных источниках, например во фруктах, овощах, мясе, яйцах, а могут синтезироваться в лаборатории и добавляться в различные продукты: биологически активные добавки, продукты питания, детское питание, косметику.

Возьмем для примера печенье, которое позиционируется как здоровый продукт, обещающий прилив энергии. Наряду с добавлением цельных зерен, польза которых неоспорима, в составе есть еще и витаминные добавки, не имеющие ничего общего с природой. Другим примером может служить белая мука, потерявшая в процессе переработки основную часть полезных веществ, а потому ее обогащают витаминами. Кроме того, витамины добавляют в соки, мюсли, фруктовые йогурты, лимонад, хлебобулочные изделия, сладости, колбасу, мясо.

Если же говорить о витаминных препаратах, то они разработаны для самых разных целей: витамины для беременных, витамины для кормящих матерей, витамины для курильщиков против грозящего им рака легких, витамины для алкоголиков против болезней печени, витамины для укрепления иммунитета против простуды и др.

Одна из важнейших причин устойчивости витаминного бума: у витаминов просто непревзойденный имидж. Уже само название «витамин» гарантирует потребителю жизненную силу.

Повсеместного дефицита витаминов у населения не существует. Правда определенные группы населения, такие как младенцы, дети, подростки, беременные, кормящие матери, спортсмены и пожилые люди, иногда, в зависимости от привычек в питании, могут иметь определенный дефицит витаминов. Однако то, что им всем необходимы витаминные препараты, ничем не доказано.

Против тезиса о дефиците витаминов говорит и то, что глобализация рынков приносит на наш стол все больше экзотически продуктов: апельсины, грейпфруты, киви, хурма, ананасы, мандарины стали для нас в какой-то мере привычнее, чем сезонные ягоды. Кроме того, мясо, яйца, рыба и молочные продукты также содержат значительные количества витаминов. Например, в рыба богата ниацином и пиридоксином, витаминами А, Е, D и В12.

Многие верят в то, что растения из-за современных методов выращивания содержат недостаточно витаминов. В этом мало правды, так как нет никаких научных доказательств этому.

Большинство сторонников идеи дефицита витаминов ссылаются на исследования Сиба-Гейги 70-80-х годов прошлого века. В этих исследованиях, проведенных химическим концерном из Базеля (Швейцария) изучалось содержание минеральных веществ и минералов в растительных продуктах питания. Данные служили сравнительной базой в более поздних исследованиях.

Одно из таких исследований, опубликованное во многих газетах, было выполнено в 1996 году диетологами санатория «Оберталь» в Шварцвальде (Германия). Исследователи из Оберталя закупили на овощном рынке и в отделе овощей крупного магазина два одинаковых набора продуктов, которые затем были переданы в научную лабораторию, изучающую наличие в них минералов и витаминов, чтобы сравнить эти данные с данными исследования Сибы-Гейги, проведенного одиннадцать лет раньше.

Результаты обертальского исследования на самом деле пугают. Например, яблоки потеряли 80% витамина С. В целом обертальские ученые пришли к выводу, что за период с 1985 по 1996 год фрукты и овощи потеряли почти 50% минералов и витаминов. Это звучит как смертный приговор нашим фруктам и овощам.

Но сравнительные исследования лишь тогда имеют смысл, если они измеряют нечто сравнимое. В случае изучения продуктов питания непросто, в особенности, если речь идет о таком чувствительном и неоднородном классе веществ как витамины.

Для того, чтобы получить действительно пригодные данные, нужно позаботится о репрезентативности исследования. Необходимо покупать фрукты, овощи, зерновые в нескольких местах и повторять закупку позднее в точно тех же местах. Какая может быть информационная значимость при сравнении данных по яблокам, выращенным в 1985 году крестьянином и проданным через два дня с данными по яблокам, выращенным в 1996 году и проданным в супермаркете после хранения в течение четырех недель?

Также важно, чтобы соответствующие измерения выполнялись той же самой лабораторией при помощи тех же самых методов анализа. Например, в 1970-е годы было невозможно выявить бета-каротин изолированно от других каротинов. Тогда просто замеряли все, что хоть как-то относилось к обширной группе каротинов.

Тот, кто хочет провести по-настоящему точные сравнительные исследования продуктов питания, должен учитывать много факторов. Однако это стоит много денег и времени, а окупятся ли все затраты и усилия, неизвестно.

Из чего производят синтетические витамины

В описании полезных свойств витаминных добавок производители часто опираются на натуральное происхождение витаминов: чем полезны и где встречаются в природе. Но произведенное в лаборатории и природой – это не одно и то же.

В самом начале производства витаминов была природа. Тиамин и пиридоксин были выделены из оболочки рисовых зерен, биотин – из яичного желтка, первоначальным источником фолиевой кислоты был шпинат.

Новые методы производства экономичны и позволяют добиться большого выхода. Синтетические витамины создают в лаборатории из совсем неаппетитных источников. Рибофлавин могут производить при помощи бактерии Bacillus subtilis при помощи генных манипуляций. Жизненно необходимую фолиевую кислоту получают из трупов лягушек-быков. И наконец, в лабораториях используют метод производства витаминов из нефти.

Польза или вред?

Витамины в лечебных целях, как антибиотики и гормоны, относятся к тем веществам, к которым должны быть серьезные показания. Только врач, основываясь на лабораторных анализах, может прописать витамины. При этом витамины выступают как вспомогательное или основное лекарство, а не замена здоровому питанию.

Помните, что принимая витамины из аптеки в целях профилактики, в лучшем случае они проходят транзитом через организм либо усваиваются на 5% (в то время как из натуральных источников витамины усваиваются на 95%). Поэтому синтетические витамины существенной пользы не приносят. Например, витамины считаются эффективными антиоксидантами, поэтому защищают от опухолей. Но сомнительно, что витамины защищают от рака. Ученые, проводившие исследования о раке груди на 600 женщинах в американском штате Северная Каролина, пришли к выводу: «Некоторые факты свидетельствуют в пользу того, что еда, богатая витаминами, снижает риск рака груди. Однако этот эффект ни в коем случае нельзя переносить на витаминные добавки». Исследователь витаминов Петер Вебер, работающий в американском филиале фирмы Roche Vitamins & Fine Chemicals, вынужден признать: «Большинство научных исследований последних двадцати лет пришли к выводу, что профилактический прием витамина С не оказывает существенного влияния на подверженность простудным заболеваниям».

В худшем случае даже те 5%, которые попали в организм могут причинить гипервитаминоз, который даже опаснее гиповитаминоза. К примеру ниацин, витамин В3, в последнее время рекламируют как «тайное оружие» против атеросклероза и инфаркта миокарда. Поэтому отравление препаратами ниацина встречается часто. Проблемы начинаются с дозы 100 миллиграммов. Симптомы отравления: тошнота, головные боли и мышечные судороги. В очень высоких дозах, равных 1000 миллиграммах, ниацин может привести к нарушениям сердечного ритма, а также к желтухе и повреждению печени.

Большое значение имеет то, потребляются ли витамины вместе с другими веществами, то есть с фруктами, овощами и прочими продуктами питания. Или же принимаются изолированно, как витамины, созданные в лаборатории.

«Я вижу изрядную долю высокомерия в том, — говорит американский диетолог Вик Шейн, — чтобы приписывать синтетическим витаминам такое же действие, как и витаминам природным». Ведь совершенно неясно, каким образом ведут себя витамины в природе в соединении с другими веществами.

Мегадозы витаминов

Сторонники витаминной медицины продают мегадозы витаминов как лечение силами природы. Это удивительно уже потому, что используемые объемы витаминов невозможно было бы получить естественным путем.

Покровителем витаминизации считается двукратный лауреат Нобелевской премии Линум Паулинг. Отец ортомолекулярной медицины с ее экстремально высокими дозировками витаминов ежедневно принимал 12 000 миллиграмов витамина С, то есть количество которое соответствует 24 килограммам апельсинов. То, что он достиг возраста девяноста трех лет, считается доказательства успеха этого метода.

Правда, такая аргументация научно неубелительна: к примеру писатель Эрнс Юнгер прожил сто три года и был страстным курильщиком. Однако, никто не будет на основании этого примера рекламировать курение как средство продления жизни. Или метод фармаколога из Франкфурта Отто Леви, тоже нобелевского лауреата. По воспоминаниям современников, он начинал день дозой векамина, после просмотра почты наступал черед небольшой дозы морфия либо героина («чтобы не появлялось никаких депрессивных мыслей»), перед обедом для возбуждения аппетита принимал что-либо из анаболиков (которые сегодня возглавляют список запрещенных препаратов допинга в спортивных союзах), взбодриться после дневного сна помогала щепотка кокаина, а вечером, если не ощущалось достаточной сонливости, фармаколог принимал барбитурат. Леви прожил восемьдесят восемь лет.

Правильная доза витаминов

Ни для кого не секрет, что существуют нормы потребления витаминов. Они регулярно пересматриваются и отличаются в зависимости от страны. К тому же, поливитамины могут иметь абсолютно разный состав и дозировки у разных производителей.

Какая «правильная» доза витаминов? Знать это должен сам организм. Обычно он регулирует свои потребности самостоятельно, определяет нехватку питательных веществ и развивает аппетит на нужные продукты. Организм напоминает об ингредиентах соответствующих продуктов питания и регулирует поступление нужных веществ при помощи удовольствия от вкуса продуктов. Передозировка каких-то веществ исключается, ведь обычные продукты питания содержат вещества только в полезных количествах. Прежде чем получить избыток, человек почувствует пресыщение.

Читайте также:  Витамины допель герц с калием и магнием для чего

Как обойтись без синтетических витаминов?

Живите по принципу: «Доверять только тем витаминам, которые не указаны на упаковке». Это означает: избегайте готовых продуктов, витамизированных порошков, капсул и добавок, мультивитаминных соков или прочих продуктов питания, в которые добавлены витамины. Вместо этого каждый день съедайте кусок хлеба из цельных зерен, свежие фрукты с чистым йогуртом, а на обед солидную порцию овощей с картофелем или рисом, которые вы сами потушили. Или что-то вкусное, что снабжает вас витаминами естественным образом. При этом продукты должны быть правильно приготовлены, иначе от витаминов в них ничего не останется.

Уделите внимание полноценному питанию, а также в целом образу жизни. Займитесь физическими упражнениями себе по душе, научитесь расслабляться и радоваться тому, что есть. Получайте удовольствие от жизни и, в частности, от еды. Включите в свой рацион полезные продукты. Многочисленные исследования показывают, что люди с высоким потреблением рыбы, растительных масел, цельнозернового хлеба, фруктов и овощей имеют меньший риск заболеть атеросклерозом, диабетом и определенными видами рака. А о таких молочных продуктах, как йогурт и кефир, известно много положительных фактов, как и о красном вине, разноообразных приправах и чае. Помните, что витамины – не единственные полезные вещества в питании человека. Важную роль играют и минералы, клетчатка, антиоксиданты (например, из группы флавоноидов), эфирные масла, белки, углеводы, жиры и др.

Кроме акцента на здоровом питании уделите внимание профилактике с помощью фитотерапии, а также обогащении питания натуральными высоковитаминными продуктами: спирулине, ростках пшеницы, ростках ячменя, хлорелле, масле момордики, льняном масле.

источник

Рассуждаем о том, нужно ли пить витамины и как ненароком обогащаются фармкомпании, продавая нам мечту о здоровом цвете лица и хорошем тонусе кожи.

Последнее десятилетие страну захватила настоящая витаминная истерия. Институт питания РАМН говорит о пугающем снижении витаминов и минералов в пищевых продуктах. Аптечные прилавки завалены супермегаполивитаминными комплексами, обещающими нам волосы как у Рапунцель, ногти как у рабочего бетонного завода, мешающего бетон вручную, а энергии столько, что хватит на разрушение на три марафона без остановки.

Так ли это на самом деле? Пить или не пить? Вот в чём вопрос… Насколько реальна польза от поливитаминов и как обогащаются фармкомпании, продавая нам мечту о здоровом цвете лица и молодой упругой коже?

Не буду вдаваться в подробности. Вы все начитанные и без меня знаете, что такое витамины.

А главное, что нам без этих вот витаминов не обойтись. Они без нас могут, а мы без них нет.

Ещё одна немаловажная деталь: витамины не вырабатываются организмом, а поступают из пищи. Причём нет в природе такого растения или животного, в котором содержались бы все необходимые витамины и микроэлементы, вот и приходится нам побираться: витамин С извлекать из апельсинов и облепихи, витамин А получать, выковыривая печень из трески, и так далее.

И тут мы подходим к первому интересному моменту. Выпить ли волшебную таблетку, этикетка которой гласит о том, что в ней содержится суточная доза абсолютно всех витаминов, известных человечеству, или потратить немного времени, денег и напрячь свой мозг для составления сбалансированного режима питания для себя любимого? Могут ли витамины, находящиеся в таблетках, полностью заменить те, что мы можем получить из пищи?

И дело даже не в строении самого витамина — воспроизвести структуру молекулы не так уж сложно.

Витамины без нас могут обойтись, а мы без них нет.

Дело в том, что, потребляя любой природный источник витаминов, вы получаете «в довесок» целый ряд веществ, которые способствуют усвоению этого самого витамина. Кроме того, получение витамина с пищей обеспечивает постепенность его поступления в организм и снижение «конкурентной борьбы» за всасывание и усвоение различных несочетаемых микронутриентов. Тогда как, хватанув таблетку с полуторной дневной дозой всех витаминов сразу, вы получаете последовательное резкое повышение их концентрации в кишечнике, затем в клетках, отвечающих за всасывание, а затем и в кровотоке.

Это, прямо скажем, не очень естественно и не совсем то, чего ожидает ваш организм, и от этого неожиданного подарка он попытается избавиться. Поэтому значительная часть витаминов из этих комплексов не усваивается, и на выходе мы получаем качественную мочу разнообразных оттенков, обогащённую витаминами и минералами.

И ещё: ни один производитель, особенно если речь идёт о БАД, не может дать вам гарантию, что именно при создании его комплекса соблюдены все технологии, позволяющие полностью исключить антагонистическое воздействие витаминов друг на друга (например, кальций несовместим с железом при одновременном приёме и так далее).

Изучая вопрос гиповитаминоза, каждый раз наталкиваюсь на одну и ту же фразу в разных вариациях:

Институт питания РАМН провёл исследование, которое показало, что за последние годы содержание витаминов и минеральных веществ в овощах, фруктах, мясе, рыбе резко снизилось. За точку отсчёта исследователи взяли 1963 год и выяснили, что с тех пор содержание витамина А в яблоках и апельсинах снизилось на 66%. И теперь, чтобы организм получил такое же количество ретинола, как получали наши сограждане 50 лет назад, надо съесть не один плод, а целых три.

Я нисколько не ставлю под сомнение профессионализм и компетентность бородатых и не очень профессоров в Институте питания РАМН, просто сам собой назревает вопрос: почему именно 1963 год? Какие яблоки и апельсины брали? Из каких стран и деревень? Какая была методика? Как вычислили среднестатистическое значение тотального гиповитаминоза у почти 150 миллионов жителей нашей страны? Прямо как в песне: «Вы просто поверьте, а поймёте потом»…

А между прочим…. Стоматологи уже многие десятилетия не видели цинги из-за авитаминоза С, люди с куриной слепотой уже давно перестали считать лбом столбы в вечернее время, да и «бериберикающих» в метро как-то не встречается.

И, наконец, третий момент, о котором можно поразмышлять в приятной компании вечерком, попивая чай с имбирём и закусывая яблочками с бабушкиного сада. Уверены ли вы в качестве поливитаминного комплекса, за которым пришли в аптеку?

Выбор сейчас огромен. В России зарегистрировано более 200 поливитаминных препаратов. А БАДы можно считать до бесконечности. Для фармкомпаний это бездонная бочка — в разных вариациях и разных коробочках выпускать поливитаминные и минеральные комплексы. Добавил серу или селен, и новый продукт готов — получите, распишитесь. Увеличили дозировку витамина Е — нарисуем сердечко на коробке, и вперёд, в массы. Так что же это: выгодный бизнес или реальная забота о пациентах?

Так всё же, пить или не пить?

  1. Если есть проблема — идите к врачу. Для здоровых нужен только витамин D (для детей) и фолиевая кислота (для беременных). За остальным идите и получайте номерок на приём. Сейчас, кстати, есть онлайн-запись, очень удобно, говорят.
  2. Если врач выявил полигипо- или авитаминоз (кстати, в международной классификации болезней Х пересмотра такого диагноза нет), принимайте поливитамины, назначенные врачом, или послушайте ещё одно мнение. При доказанном гиповитаминозе принимайте конкретный витамин или группу необходимых витаминов (например, железо при железодефицитной анемии и так далее).
  3. Если весной рука всё же тянется к аптечному прилавку, мозг ещё не отошёл от зимней спячки и жизнь не мила без волшебной таблетки, выбирайте комплексы крупных проверенных фармацевтических компаний, желательно с раздельным приёмом в два или даже три этапа, чтобы улучшить усваивание и исключить «конкурентное» взаимодействие компонентов. Круглогодичный приём поливитаминов обычному здоровому человеку с «джентельменским набором» в две-три простуды в год не нужен.
  4. Пить или не пить — решать только вам. Помните: никого другого не беспокоит и не будет беспокоить ваше здоровье, кроме вас самих. Не жалуйтесь на низкое качество продуктов и повальную нехватку витаминов — питайтесь правильно. Минимизируйте и оптимизируйте тепловую обработку продуктов, питайтесь разнообразной пищей, регулярно употребляйте сезонные фрукты и овощи и замените белый хлеб и выпечку на более полезные злаки.

И самое главное, не занимайтесь самолечением!

источник

Витам и ны (от лат. vita — жизнь), группа органических соединений разнообразной химической природы, необходимых для питания человека, животных и других организмов в ничтожных количествах по сравнению с основными питательными веществами (белками, жирами, углеводами и солями), но имеющих огромное значение для нормального обмена веществ и жизнедеятельности.

Первоисточником витаминов служат главным образом растения (см. Витаминоносные растения). Человек и животные получают витамины непосредственно с растительной пищей или косвенно — через продукты животного происхождения. Важная роль в образовании витаминов принадлежит также микроорганизмам. Например, микрофлора, обитающая в пищеварительном тракте жвачных животных, обеспечивает их витаминами группы В. Витамины поступают в организм животных и человека с пищей, через стенку желудочно-кишечного тракта, и образуют многочисленные производные (например, эфирные, амидные, нуклеотидные и др.), которые, как правило, соединяются со специфическими белками и образуют многие ферменты, принимающие участие в обмене веществ. Наряду с ассимиляцией в организме непрерывно совершается диссимиляция витаминов, причём продукты их распада (а иногда и малоизменённые молекулы витаминов) выделяются наружу. Недостаточность снабжения организма витаминами ведёт к его ослаблению (см. Витаминная недостаточность), резкий недостаток витаминов — к нарушению обмена веществ и заболеваниям — авитаминозам, которые могут окончиться гибелью организма. Авитаминозы могут возникать не только от недостаточного поступления витаминов, но и от нарушения процессов их усвоения и использования в организме.

Основоположник учения о витаминах русский врач Н. И. Лунин установил (1880), что при кормлении белых мышей только искусственным молоком, состоящим из казеина, жира, молочного сахара и солей, животные погибают. Следовательно, в натуральном молоке содержатся и другие вещества, незаменимые для питания. В 1912 польский врач К. Функ, предложивший само название «витамины», обобщил накопленные к тому времени экспериментальные и клинические данные и пришёл к выводу, что такие заболевания, как цинга, рахит, пеллагра, бери-бери, — болезни пищевой недостаточности, или авитаминозы. С этого времени наука о витаминах (витаминология) начала интенсивно развиваться, что объясняется значением витаминов не только для борьбы со многими заболеваниями, но и для познания сущности ряда жизненных явлений. Метод обнаружения витаминов, примененный Луниным (содержание животных на специальной диете — вызывание экспериментальных авитаминозов), был положен в основу исследований. Было выяснено, что не все животные нуждаются в полном комплексе витаминов, отдельные виды животных могут самостоятельно синтезировать те или иные витамины. В то же время многие плесневые и дрожжевые грибы и различные бактерии развиваются на искусственных питательных средах только при добавлении к этим средам вытяжек из растительных или животных тканей, содержащих витамины. Таким образом, витамины необходимы для всех живых организмов.

Изучение витаминов не ограничивается обнаружением их в естественных продуктах с помощью биологических тестов и другими методами. Из этих продуктов получают активные препараты витаминов, изучают их строение и, наконец, получают синтетически. Исследована химическая природа всех известных витаминов Оказалось, что многие из них встречаются группами по 3—5 и более родственных соединений, различающихся деталями строения и степенью физиологической активности. Было синтезировано большое число искусственных аналогов витаминов с целью выяснения роли функциональных групп. Это способствовало пониманию действия витаминов. Так, некоторые производные витаминов с замещенными функциональными группами оказывают на организм противоположное действие, по сравнению с витаминами, вступая с ними в конкурентные отношения за связь со специфическими белками при образовании ферментов или с субстратами воздействия последних (см. Антивитамины).

Витамины имеют буквенные обозначения, химические названия или названия, характеризующие их по физиологическому действию. В 1956 принята единая классификация витаминов, которая стала общеупотребительной.

Наличие химически чистых витаминов дало возможность подойти к выяснению их роли в обмене веществ организма. Витамины либо входят в состав ферментов, либо являются компонентами ферментативных реакций. При отсутствии витаминов в организме нарушается деятельность ферментных систем, в которых они участвуют, а следовательно, — и обмен веществ. Известно несколько сот ферментов, в состав которых входят витамины, и огромное количество катализируемых ими реакций. Многие витамины — преимущественно участники процессов распада пищевых веществ и освобождения заключённой в них энергии (витамины B1, В2, PP и др.). Участвуют они и в процессах синтеза: B6 и В12 — в синтезе аминокислот и белковом обмене, В3 (пантотеновая кислота) — в синтезе жирных кислот и обмене жиров, Вс (фолиевая кислота) — в синтезе пуриновых и пиримидиновых оснований и многих физиологически важных соединений — ацетилхолина, глутатиона, стероидов и др. Менее изучено действие жирорастворимых витаминов, однако несомненно их участие в построении структур организма, например в образовании костей (витамин D), развитии покровных тканей (витамин А), нормальном развитии эмбриона (витамин Е и др.). Таким образом, витамины имеют огромное физиологическое значение. Выяснение физиологической роли витаминов позволило использовать их для витаминизации продуктов питания, в лечебной практике и в животноводстве. Особенно широко стали применяться витамины после освоения их промышленного синтеза. См. также Витаминные препараты.

Лит.: Кудряшов Б. А., Биологические основы учения о витаминах, М., 1948 (имеется библ.); Валдман A. Р., Значение витаминов в питании сельскохозяйственных животных и птицы, Рига, 1957; Березовский В. М., Химия витаминов, М., 1959; Труфанов А. В., Биохимия и физиология витаминов и антивитаминов, М., 1959; Шилов П. И. и Яковлев Т. Н., Основы клинической витаминологии, Л., 1964 (имеется библ.); Букин В. Н., Пантамат кальция (витамин B15), М., 1968; Vitamine. Chemie und Biochemie, Hrsg. von J. Fragner, Bd 1—2, Jena, 1964—65 (имеется библ.); Wagner A. F., Folkers K., Vitamins and coenzymes, N. Y., [1964]; The vitamins: chemistry, physiology, pathology, methods, 2 ed., ed. W. Н. Sebrell, R. S. Harris, v. 1, N. Y. — L., 1967.

Получение витаминов. Витамины получают главным образом синтетически и лишь в некоторых случаях отдельные стадии в цепи синтеза выполняются биологическими способами. Производство концентратов витаминов из продуктов растительного или животного происхождения почти полностью потеряло своё значение.

Получение витаминов относится к тонкому органическому многостадийному синтезу. Химическими методами синтезируют следующие витамины: А, B1, B2, В3, B6, Вс, С, D2, D3, Е, К, PP, а В12 — ферментативными методами микробиологического синтеза. Ферментацией пользуются также на одной из стадий синтеза витамина С. Этот витамин в виде индивидуального кристаллического вещества высокой степени чистоты образуется при восстановлении D-глюкозы в D-copбит. Последний ферментативно окисляют в L-copбозу, которую после ряда операций превращают в витамин С (I). Витамин А (ретинол) синтезируют, исходя из псевдоионона (II), который циклизуют в b -ионон и затем через ряд сложных операций превращают в ретинол (III). Псев-доионон служит также исходным сырьём для многостадийного синтеза изофитола, используемого при получении чистого витамина Е ( a -токоферилацетата, IV).

Читайте также:  Витамины для укрепления волос и для чего он нужен

Витамин K3 (2-метил-1,4-нафтохинон) получают окислением 2-метилнафталина. Витамином K3 пользуются в медицинской практике в виде растворимой в воде натриевой соли бисульфитного производного (V).

Производство витамина B1 (тиамина, VI) основано на конденсации 2-метил-4-амино-5-хлор (бром) метилпиримидина с 4-метил-5- b -оксиэтилтиазолом. Кофермент витамина B1 — кокарбоксилаза (VII), или дифосфорный эфир тиамина, применяемый для лечения заболеваний сердца, получают фосфорилированием тиамина с последующей очисткой на ионообменных смолах и кристаллизацией.

Витамин В2 (рибофлавин, VIII) образуется при культивировании Eremothecium ashbyii и других микроорганизмов без выделения в виде сухой биомассы (с использованием только для кормления с.-х. животных), а синтетический рибофлавин (применяемый в медицине) получают в виде кристаллического продукта деструктивным окислением D-глюкозы (из кукурузного крахмала) в D-apaбоновую кислоту и рядом других операций превращают в конечный продукт — жёлто-оранжевые кристаллы высокой степени чистоты. Важное производное рибофлавина — его кофермент рибофлавин-5′-фосфат натрия (IX, R = Na), применяемый для инъекций, получают фосфорилированием рибофлавина, а другой кофермент — ФАД (IX, R — остаток аденозин-5′-фосфата) получают конденсацией рибофлавина-фосфата и аденозин-5′-фосфата.

Витамин B6 (пиридоксин, X, а) синтезируют, конденсируя метоксиацетил-ацетон с циануксусным эфиром в присутствии аммиака в 2-метил-4-метоксиметил-5-циан-6-оксипиридин, который подвергают нитрованию, затем рядом операций превращают в пиридоксин. Известен также и другой способ получения пиридоксина — через 4-метил-5-пропоксиоксазол диеновым синтезом с формалем бутен-2-диола-1,4. Другими формами B6 являются пиридоксол (X, б) и пиридоксамин (X, в).

источник

Препараты подгрупп исключены. Включить

Витамины являются незаменимыми элементами, необходимыми для роста, развития и жизнедеятельности человека. Большинство витаминов в организме не синтезируется, источником их обычно является внешняя среда (пищевые продукты растительного и животного происхождения, микроорганизмы — нормальные обитатели ЖКТ). Недостаток витаминов в организме (витаминная недостаточность) может быть следствием низкого содержания витаминов в пище, нарушения их всасывания (при патологических изменениях пищеварительного тракта). Повышенная потребность в витаминах возникает в период интенсивного роста, в пожилом возрасте, при беременности, кормлении грудью, тяжелом физическом труде, при интенсивных занятиях спортом. В таких случаях необходимо употреблять витаминные препараты — лекарственные средства, действующим началом которых являются витамины или их более активные аналоги (коферменты). Витаминные препараты получают из природного сырья или синтетическим путем. Витамины подразделяют на две группы — водорастворимые и жирорастворимые.

К водорастворимым витаминам относятся: аскорбиновая кислота (витамин С), витамины группы В — тиамин (витамин В1), рибофлавин (витамин В2), пиридоксин (витамин В6), никотиновая кислота (витамин РР), цианокобаламин (витамин В12), биофлавоноиды (витамин Р), фолиевая кислота (витамин Вс, витамин В9), пантотеновая (витамин В5) и пангамовая (витамин В15) кислоты.

Витамин В1 (тиамин) содержится в дрожжах, зародышах и оболочках пшеницы, овса, гречихи, а также в хлебе, изготовленном из муки простого помола. Суточная потребность взрослого человека в витамине В1 составляет 1,5–2 мг. Препараты группы витамина В1 являются не только специфическими «антигиповитаминозными» средствами. Они активно влияют на различные функции организма, вмешиваясь в обмен веществ и в нервно-рефлекторную регуляцию, оказывают влияние на проведение нервного возбуждения в холинергических синапсах. Активной (коферментной) формой витамина В1 является его фосфорилированное производное — тиаминдифосфат (кокарбоксилаза), участвующий в реакциях декарбоксилирования в качестве простетической части декарбоксилаз и некоторых других ферментов, играющих важную роль в углеводном и энергетическом обмене, особенно нервной и мышечной тканей. Для медицинских целей применяют препараты, содержащие синтетический тиамин в виде бромида или хлорида, кокарбоксилазу и др. Помимо профилактического и лечебного действия при соответствующем гипо- и авитаминозе («бери-бери»), показаниями к применению витамина В1 являются невриты, радикулит, невралгии, периферические параличи. Кокарбоксилаза широко используется в кардиологии. В дерматологической практике витамин В1 назначают при дерматозах неврогенного происхождения, зуде различной этиологии, пиодермии, экземе, псориазе.

Витамин В12 (цианокобаламин) тканями животных не образуется. Его синтез в природе осуществляется только микроорганизмами. Потребности человека и животных в нем обеспечиваются микрофлорой кишечника, откуда цианокобаламин поступает в органы, накапливаясь в наибольших количествах в почках, печени, стенке кишечника. Биологически активными (коферментными) формами витамина В12 являются метил- и 5-дезоксиаденозил-кобаламин. Основная функция — участие в переносе подвижных метильных групп и водорода. Цианокобаламин обладает многими фармакологическими свойствами. Он является фактором роста и стимулятором гемопоэза, оказывает благоприятное влияние на функции печени и нервной системы, активирует процессы свертывания крови, обмен углеводов и липидов, участвует в синтезе различных аминокислот. Для применения в качестве лекарственного средства витамин В12 получают методом микробиологического синтеза, а также используют препараты, получаемые из печени животных, органа, способного его депонировать. Цианокобаламин является высокоэффективным средством, помогающим при злокачественном малокровии, постгеморрагических (железодефицитных), алиментарных и других видах анемии (см. Стимуляторы гемопоэза). Назначают его также при лучевой болезни, заболеваниях печени (болезнь Боткина, гепатит, цирроз), при некоторых заболеваниях нервной системы, инфекциях и др.

Витамин В2 (рибофлавин) в организм человека поступает, главным образом, с мясными и молочными продуктами. Он широко распространен в растительном и животном мире и содержится в дрожжах, молочной сыворотке, яичном белке, мясе, рыбе, печени, горохе, зародышах и оболочках зерновых культур. Получен также синтетически. Суточная потребность в витамине В2 для взрослого человека составляет 1,5–2 мг. Биологическая роль витамина В2 , как и других водорастворимых витаминов, связана с его субстратным участием в образовании соответствующего кофермента. При поступлении в организм рибофлавин взаимодействует с аденозинтрифосфорной кислотой и образует флавин-мононуклеотид и флавинаденин-динуклеотид. Оба они являются простетической частью ферментных флавинпротеинов, участвующих в переносе протонов и регулировании окислительно-восстановительных процессов. Таким образом рибофлавин играет важную роль в углеводном, белковом и жировом обмене, в поддержании нормальной зрительной функции глаза (входит в состав зрительного пурпура и защищает сетчатку от вредного воздействия УФ-излучения). В лечебных целях витамин В2 применяют при гипо- и арибофлавинозе, конъюнктивите, кератите, язве роговицы, катаракте, при длительно незаживающих ранах и язвах, общих нарушениях питания, лучевой болезни, астении, нарушениях функции кишечника, болезни Боткина и других заболеваниях.

Активностью витамина В6 обладают производные пиридина: пиридоксин, пиридоксаль, пиридоксамин, отличающиеся друг от друга заместителями в положении 4 (соответственно метоксил, формил, метиламин). Витамин В6 содержится в растениях и органах животных, особенно в неочищенных зернах злаковых культур, в овощах, мясе, рыбе, молоке, печени трески и крупного рогатого скота, яичном желтке, дрожжах. Суточная потребность взрослого человека в нем составляет 2 мг и удовлетворяется частично продуктами питания, частично синтезом микрофлоры кишечника. Пиридоксин (пиридоксаль, пиридоксамин), поступая в организм, фосфорилируется, превращается в пиридоксаль−5-фосфат и в этой форме катализирует декарбоксилирование и переаминирование аминокислот. Он необходим для нормального функционирования центральной и периферической нервной системы. Применяют витамин В6 при В6-гиповитаминозе, токсикозах беременных, анемиях, лейкопениях различной этиологии, заболеваниях нервной системы (паркинсонизм, радикулиты, невриты, невралгии), ряде кожных заболеваний и др.

Фолиевая кислота (Витамин Bc, витамин B9) входит в группу витаминов В. Она содержится в свежих овощах (бобах, шпинате, томатах и др.), а также в печени и почках животных. В организме человека, кроме того, образуется микрофлорой кишечника. Для медицинских целей ( в т.ч. при интоксикации, вызванной противоопухолевыми препаратами) используют синтетическую фолиевую кислоту. Сама фолиевая кислота неактивна. В организме она восстанавливается до тетрагидрофолиевой, являющейся коферментом многих метаболических процессов. В первую очередь она катализирует перенос одноуглеродистых фрагментов в синтезе пуринов и пиримидинов, а значит необходима для образования РНК и ДНК . Ее дефицит нарушает митотическое деление клеток, их созревание и функционирование. Недостаточность фолиевой кислоты (и витамина В12) приводит к развитию мегалобластной анемии. Ее препараты назначают при макроцитарной и пернициозной (вместе с витамином В12) анемиях (см. Стимуляторы гемопоэза).

Аскорбиновая кислота (витамин С) содержится в значительных количествах в плодах шиповника, капусте, лимонах, апельсинах, хрене, ягодах, хвое и др. Небольшое ее количество содержится в печени, мозге, мышцах животных. Для медицинских целей витамин С получают синтетическим путем. В обычных условиях суточная потребность взрослого человека в аскорбиновой кислоте составляет 70–100 мг, основные ее эффекты обусловлены участием в регуляции окислительно-восстановительных процессов, поскольку аскорбиновая кислота легко переходит в дегидроаскорбиновую и обратно, донируя или акцептируя два протона (окисляя или восстанавливая соответствующие субстраты). Витамин С активирует деятельность желез внутренней секреции, регулирует все виды обмена, свертываемость крови, регенерацию тканей, образование стероидных гормонов, синтез коллагена, проницаемость капилляров и др. Аскорбиновая кислота, оказывая стимулирующее влияние на организм в целом, повышает его адаптационные возможности, резистентность к инфекциям. Витамин С добавляют к некоторым противовоспалительным и другим готовым лекарственным формам (Аспирин-С, Упсарин УПСА с витамином С, Эффералган с витамином С и др.).

Группа жирорастворимых витаминов объединяет витамины А, D, Е и К.

Биологическая роль жирорастворимых витаминов в значительной степени обусловлена их участием в обеспечении нормального функционального состояния клеточных, цитоплазматических мембран.

Витамин А и его синтетические аналоги и гомологи относят к ретиноидам — производным ретиноевой кислоты. Биологически активными формами витамина А являются ретинол, ретиналь и сама ретиноевая кислота. Витамин А (ретинол) содержится в продуктах животного происхождения — рыбьем жире, сливочном масле, яичном желтке, печени некоторых рыб (треска, морской окунь и др.) и морских животных (кит, морж, тюлень). В растительных пищевых продуктах ретинол не встречается. Однако многие из них (морковь, шпинат, салат, петрушка, зеленый лук, щавель, красный перец, черная смородина, черника, крыжовник, персики, абрикосы и др.) содержат каротин, являющийся провитамином А, из которого в организме образуется ретинол. Витамин А регулирует процессы ороговения, образование и выделение сала в коже (секрет сальных желез), необходим для нормального роста волос, поддержания иммунитета, участвует в противоопухолевой защите организма. Ретиналь обеспечивает процессы свето- и цветовосприятия, ретинол и ретиноевая кислота участвуют в синтезе витамин А-зависимых гликопротеинов. В медицинской практике применяют препараты, содержащие витамин А, природного происхождения (например, Рыбий жир) и синтетические (Ретинола ацетат и Ретинола пальмитат). Препараты витамина А назначают в профилактических и лечебных дозах. Профилактическую дозу устанавливают исходя из суточной потребности организма человека: для взрослых — 1 мг, для беременных и кормящих женщин — 1,2–1,4 мг, для детей в зависимости от возраста — от 0,4 до 1 мг, лечебные — по показаниям. Основными показаниями являются гипо- и авитаминоз А, некоторые заболевания глаз, заболевания и поражения кожи (обморожения, ожоги, раны и др.). Применяют их также в комплексной терапии рахита, гипотрофии, острых респираторных заболеваний, для профилактики образования конкрементов в ЖКТ и мочевыводящих путях и др.

Витамином D в настоящее время называют два жирорастворимых, близких по химическому строению и действию вещества — эргокальциферол (витамин D2) и колекальциферол (витамин D3). Основным свойством этих соединений является способность предупреждать и лечить рахит, в связи с чем их иногда называют противорахитическими витаминами. Витамин D2 в небольшом количестве содержится в пищевых продуктах: рыбьем жире, печени, икре, яичном желтке, сливочном масле, молоке, сыре, а также в растениях (люцерна, хвощ, крапива, петрушка). Витамин D3 образуется в клетках кожи человека под воздействием ультрафиолетовых лучей солнечного света. Провитамином колекальциферола является 7-дегидрохолестерол. Количество синтезируемого витамина D3 зависит от длины волны света (наиболее эффективен средний спектр волн, характерный для света солнца утром и на закате), пигментации кожи (у людей с темным цветом кожи вырабатывается меньше витамина D), возраста (с возрастом синтез снижается), экологической обстановки (промышленные выбросы и пыль задерживают УФ-лучи). По биологической активности витамины D2 и D3 практически не различаются, поскольку в организме оба, вероятно, превращаются в кальцитриол — активный метаболит витамина D. Доказано наличие в тканях специфических рецепторов, лигандом для которых является кальцитриол.

Основным свойством витамина D является его участие в метаболизме кальция. Он способствует всасыванию кальция в пищеварительном тракте, активирует его отложение в костях и препятствует резорбции из костной ткани. В настоящее время витамин D рассматривают не только как витамин, но и как гормон, регулирующий вместе с гормоном паращитовидной железы концентрацию ионов кальция в плазме крови. Витамин D регулирует также содержание фосфора в организме. Применяют витамин D для профилактики и лечения рахита и заболеваний костей, вызванных нарушениями обмена кальция (остеомаляция и некоторые формы остеопороза).

Под названием «Витамин Е» известен ряд соединений (токоферолов), близких по химической природе и биологическому действию. Наиболее активным из них является D-альфа-токоферол. Токоферолы содержатся в зеленых частях растений, особенно в молодых ростках злаков, богаты токоферолами растительные масла (подсолнечное, хлопковое, кукурузное, арахисовое, соевое, облепиховое). Некоторое количество их содержится также в мясе, жире, яйцах, молоке. Витамин Е является эндогенным противоокислительным фактором (антиоксидантом), тормозящим перекисное окисление липидов клеточных мембран. Участвует в биосинтезе гема и белков, пролиферации клеток, в тканевом дыхании и других важнейших процессах клеточного метаболизма. Синтетический препарат витамина Е (токоферола ацетат), наряду с другими антиоксидантами (эмоксипин и др.), используют в комплексной терапии сердечно-сосудистых заболеваний, глазных болезней и др. Широкое применение нашел токоферола ацетат в гериатрической практике. Витамин Е назначают при мышечных дистрофиях, дерматомиозитах, амиотрофическом боковом склерозе, нарушениях менструального цикла, угрозе прерывания беременности и др.

Под общим названием «Витамин К» объединяют ряд веществ, в т.ч. витамины К1 (содержится в листьях шпината, капусте, томатах, салате) и К2 (синтезируется бактериями в тонком кишечнике человека, а также клетками печени животных). Витамин К является жирорастворимым витамином, который называют противогеморрагическим или коагуляционным (участвует в биосинтезе протромбинового комплекса и способствует нормальному свертыванию крови). При его недостаточности развивается повышенная кровоточивость, геморрагический синдром (см. Коагулянты ( в т.ч. факторы свертывания крови), гемостатики). По последним данным, витамин К играет также важную роль в регуляции уровня белков костной и других тканей организма, активирует синтез остеокальцина (неколлагенового белка), присутствующего в костной ткани и синтезирующегося остеобластами (клетками, отвечающими за формирование кости). Поэтому снижение уровня витамина К может отражаться на плотности костной ткани и привести к снижению прочности костей и остеопорозу.

В ряде случаев витамины взаимно усиливают оказываемые ими физиологические эффекты; так, снижение под влиянием витамина Р проницаемости сосудов потенцируется аскорбиновой кислотой, взаимно усиливается стимуляция кроветворения цианокобаламином и фолиевой кислотой.

В некоторых случаях при комбинированном применении уменьшается токсичность витаминов, например, витамин D лучше переносится на фоне витамина А. Вместе с тем витамины могут проявлять и антагонистические свойства: никотиновая кислота тормозит липотропное действие холина. Активно участвуя в различных биохимических процессах, витамины при их сочетании оказывают более сильное и разностороннее биологическое действие. Выпускается большое количество отечественных и зарубежных комбинированных витаминных препаратов в разных лекарственных формах: таблетки, шипучие таблетки, драже, капсулы, сиропы. Многие из них являются многокомпонентными, содержащими большой набор не только витаминов, но и разнообразных макро- и микроэлементов (медь, железо, цинк, кобальт, марганец, молибден, селен, хром и др.).

источник